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Computational simulations of ocean circulation rely on the numerical solution
of partial differential equations of fluid dynamics, as applied to a relatively
thin layer of stratified fluid on a rotating globe. This paper describes some
of the physical and mathematical properties of the solutions being sought,
some of the issues that are encountered when the governing equations are
solved numerically, and some of the numerical methods that are being used
in this area.
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1. Introduction

The circulation of the world’s oceans plays a major role in the global
climate system. For example, the circulations of the atmosphere and ocean
move large amounts of heat from tropical regions to higher latitudes, and
this transport serves to moderate the temperature differences caused by
unequal solar heating. In the case of the ocean, much of the transport is
due to intense currents that are typically found along the western bound-
aries of ocean basins, and some is also due to turbulent mixing due to eddies.
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An important part of the picture is the buoyancy-driven ‘thermohaline cir-
culation’, in which a portion of the warm water in the Gulf Stream flows
to the far northern Atlantic, becomes colder and saltier due to atmospheric
forcing, sinks due to the increased density, and then moves slowly south-
ward along the ocean’s bottom to become part of a global circulation with
a period of roughly a millennium.

An illustration of the circulation of the ocean is given in Figure 1.1. The
figure shows the sea-surface temperature in the western Atlantic, at a fixed
time, as computed in a numerical simulation using the Miami Isopycnic
Coordinate Ocean Model (Bleck, Rooth, Hu and Smith 1992, Bleck 2002).
The black regions represent land masses, and the various shades of grey
indicate water temperatures. (Bright regions do not indicate the highest
temperatures. Instead, this greyscale plot was reproduced from a colour
original, and in some cases different colours were mapped to similar shades
of grey.) The warmest waters are located in the southernmost region, and
these are seen to move northward along the eastern coast of the United
States and then into the interior of the North Atlantic. The figure suggests
the role of the ocean in the Earth’s climate, and it also illustrates how
ocean currents exhibit small-scale meanders and eddies in addition to their
larger-scale patterns.

In order to assess various scenarios for the future evolution of the Earth’s
climate, numerous groups have used numerical simulations based on coupled
climate models that include models of the atmosphere, ocean, sea ice, and
effects of the land surface. These models are run for centuries of model time
and are very computationally intensive. Extensive information about the
usage of such models is included in a recent report by the Intergovernmental
Panel on Climate Change (2001).

More localized aspects of ocean circulation are also of interest, for scien-
tific and societal reasons. For example, in certain coastal regions (such as
along the northwestern United States) the prevailing winds sometimes cause
the surface waters to shift offshore, so that the relatively cooler deep waters
well upward to the surface. This upwelling brings nutrients that support
the base of the food chain. These coastal upwelling regions occupy at most
a few per cent of the area of the world’s oceans, but in biological terms they
are extraordinarily productive (Gill 1982).

There are multiple reasons for obtaining a better understanding of the
circulation of the ocean, and numerical simulation is an important tool for
gaining that understanding. The design of numerical algorithms for this
purpose is heavily influenced by the physical properties of the flows being
modelled and by the mathematical properties of the solutions of the govern-
ing equations. A description of some of these properties is a major emphasis
of this review.
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Figure 1.1. Sea-surface temperature in the western Atlantic Ocean, as
computed in a numerical simulation. (Figure provided by Rainer Bleck,
NASA Goddard Institute for Space Studies.)
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Section 2 gives an overview of length, time, and velocity scales and some
other physical properties of oceanic flows. Section 3 describes the prob-
lem of choosing a vertical coordinate for an ocean circulation model; the
geometrical height z is a traditional choice, but there are thermodynamic
and hybrid alternatives that are currently receiving serious attention. Sec-
tion 4 summarizes some properties of solutions of the governing equations,
including geostrophic balance, conservation of potential vorticity, Rossby
waves, and the multiple time scales resulting from the contrast between fast
external waves and the slower internal and advective motions. Section 5
discusses the numerical treatment of these multiple time scales, and it also
describes some time-stepping schemes. Section 6 discusses grids and spatial
discretizations, the numerical simulation of advection, and the numerical
solution of the momentum equations.

Section 7 gives a detailed derivation of the partial differential equations
that describe the conservation of mass, momentum, and tracers for a strat-
ified and hydrostatic fluid that is in motion relative to a rotating spheroid.
In this discussion the horizontal coordinates are arbitrary orthogonal curvi-
linear coordinates, and the vertical coordinate is a generalized coordinate
that includes all of the cases discussed in Section 3. This derivation is placed
at the end of the paper because of its length, and the preceding sections
refer forward to it when needed.

2. Physical characteristics of large-scale oceanic flows

The physical motions of the ocean exhibit a wide range of space and time
scales, and when viewed on a sufficiently large scale the circulation of the
ocean is very nearly hydrostatic. In addition, the interior of the ocean is
stratified, and over much of the ocean the relatively warm upper layers
are nearly isolated from the relatively cold lower layers. These and other
physical properties of the ocean are outlined in the present section.

2.1. Length scales and the hydrostatic assumption

Table 2.1 shows some features of oceanic flows that are resolved in simula-
tions on a basin scale or global scale. The phrase ‘horizontal gyres’ refers
to closed loops of circulation that are driven by the wind stress acting at
the upper surface of the ocean. For example, a portion of the Gulf Stream
returns laterally and southward to complete a closed loop, and the Kuroshio
current plays an analogous role in the North Pacific.

The table indicates that the vertical length scale in the ocean is much
smaller than the lateral dimensions of the various features listed there. The
statement that the vertical length scale is small compared to the horizontal
length scale is known as the shallow water condition, and it is one of the fun-
damental assumptions of large-scale ocean modelling. In colloquial terms,
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Table 2.1. Approximate length scales in the ocean. All quantities
are horizontal dimensions, unless otherwise stated.

Ocean basins ∼ 5000 to 10000 km
Horizontal gyres basin scale
Western boundary currents ∼ 100 km
Eddies tens to hundreds of km
Depth of the ocean ∼ 4 to 5 km, in the mid-ocean
Depth of surface currents hundreds of metres

this condition can be phrased as follows: The Pacific Ocean is shallow. Your

coffee cup is deep.

One consequence of the shallow water condition is that, for large-scale
modelling, the ocean can be regarded as nearly hydrostatic, i.e., the verti-
cal acceleration of the fluid is negligible. This conclusion can be reached by
a formal scaling analysis, as given, for example, by Holton (1992) or Ped-
losky (1987). For a more informal argument, let L be a horizontal distance
over which the horizontal velocity varies significantly. This variation in hor-
izontal velocity can induce a horizontal divergence that causes the elevation
of the free surface at the top of the fluid to rise or fall. However, this diver-
gence acts over a vertical distance that is much smaller than L, and since
the effect of this divergence is spread out over a large horizontal extent,
the elevation of the free surface must change very slowly. For an analogy,
suppose that a large swimming pool is being filled by a high-volume pump.
An observer next to the pump may think that the water is flowing rapidly
into the pool, but the water level changes slowly because the effect of the
pumping is spread over a large horizontal area.

The hydrostatic assumption is not valid for motions whose horizontal
scale is comparable to the vertical scale, or smaller. For example, in the
case of the thermohaline circulation, the sinking of water in the far northern
Atlantic takes place in fields of convective plumes; the fields are on the order
of a hundred kilometres wide, and the width of each individual plume is on
the order of a kilometre or less. The downdraft in such a plume is not
hydrostatically balanced, and it also cannot be resolved in a climate model
using present-day computers. Instead, this process must be represented
by some kind of parametrization (Marshall and Schott 1999). In addition,
limited-area models of near-shore processes can have grid spacings that are
fine enough to resolve nonhydrostatic motions, and in that case the models
must be configured accordingly. However, the emphasis in this review is
on physical processes and numerical methods associated with large-scale
circulation, and so the hydrostatic condition will assumed here except when
stated otherwise.
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2.2. Stratification

One simple model of oceanic motions is provided by the shallow water equa-
tions (Section 4.2), which describe a hydrostatic fluid having constant den-
sity. This system of equations is sufficient, for example, to enable highly
accurate modelling of global tides (Bennett 2002). However, the assump-
tion of constant density is only an approximation. Within a given water
column, the density can vary by a few per cent from the top of the fluid
to the bottom, and additional variation is found over the lateral extent of
the ocean (Gill 1982). It turns out that these variations in density play a
crucial role in major features of the ocean’s dynamics, such as the thermo-
haline circulation, and so they must be incorporated into models of the
general circulation of the ocean.

The density in the ocean is determined by temperature, salinity, and
pressure, with most of the vertical variation within a water column being
due to the pressure. However, the dependence on pressure is dynamically
not very significant (Sun et al. 1999), and in physical oceanography it is
common practice to use the concept of ‘potential density’, which is the
density after adiabatic adjustment to a reference pressure. That is, imagine
that the pressure acting on a fluid parcel is changed to some fixed reference
pressure, without any heat flowing into or out of the parcel and without
any changes in the salinity of the parcel. The reference pressure could be
atmospheric pressure or the pressure at some specified depth. The density
after this adjustment depends only on temperature and salinity, and it is
referred to as the potential density. Similarly, the ‘potential temperature’
is defined to be the temperature of a fluid parcel after the same kind of
adjustment to a reference pressure.

The stratification of the ocean is illustrated in Figure 2.1, which shows a
contour plot of the zonal (east–west) average of potential density in the Pa-
cific Ocean, with the potential density referenced to atmospheric pressure.
This plot represents a climatological mean taken from the atlas of Levitus
(1982). In this plot the vertical coordinate is the depth, in metres, and the
horizontal coordinate is the latitude, in degrees, from 90◦S to 90◦N. The
horizontal axis thus extends for approximately 20, 000 kilometres, whereas
the vertical axis covers 5.5 kilometres. One feature seen in the plot is that
some of the surfaces of constant potential density outcrop to the surface,
owing to the lateral variation in temperature, and some of the surfaces inter-
sect the bottom topography. Another feature is that most of the variation
of potential density is found near the upper surface, whereas the abyssal
waters are relatively homogeneous.

One feature not shown in Figure 2.1 is the mixed layer at the top of the
ocean. The uppermost part of the ocean tends to be vertically homogeneous,
due in part to mixing caused by wind forcing. In circumstances where the
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Figure 2.1. East–west average of potential density in the
Pacific Ocean. The contour labels represent values of
potential density minus 1000 kg/m3; for example, the
contour labelled 27.00 corresponds to potential density
1027 kg/m3. (From Levitus (1982).)

atmosphere is colder than the ocean, mixing is also generated by convective
overturning within the upper ocean. The thickness of the mixed layer is
typically on the order of tens of metres to perhaps hundreds of metres.
However, in deeply convective regions such as those in the far northern
Atlantic, the mixed layer can sometimes be more than 2000 metres thick
(Marshall and Schott 1999).

2.3. Time and velocity scales

Table 2.2 lists some approximate time and velocity scales for prominent
motions in the ocean. The table includes the periods of some large-scale
circulation patterns, and it also lists the velocities of currents and of two
types of external waves and two types of internal waves: see, e.g., Gill
(1982). In the case of an external wave, all fluid layers thicken or thin by
approximately the same proportion at a given horizontal location and time,
as illustrated in Figure 2.2. For such a wave, the behaviour of the free sur-
face at the top of the fluid reveals the nature of the wave motion throughout
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Table 2.2. Time and velocity scales.

Thermohaline circulation ∼ millennium
Wind-driven gyres decades
Currents ∼ 1 m/sec for strong currents, elsewhere much less
External gravity waves ∼ √

gH, e.g., ∼ 200 m/sec
Internal gravity waves a few m/sec or less
External Rossby waves ∼ 20 m/sec
Internal Rossby waves ∼ 0.02 to ∼ 1 m/sec, depending on the latitude

the interior, and the horizontal velocity field is essentially independent of
vertical position. On the other hand, an internal wave consists of undula-
tions of surfaces of constant density within the fluid, and the free surface
remains nearly level.

In the case of external gravity waves the restoring force is due to the den-
sity contrast between water and air, whereas for internal gravity waves the
restoring force is due to variations of density within the fluid. The restor-
ing force is much weaker in the latter case, so internal gravity waves move
much more slowly than external gravity waves. In the case of Rossby waves
the restoring mechanism is based on vorticity instead of gravity, and the
existence of such waves depends on the variation of the Coriolis parameter
with latitude and/or variations in the topography at the bottom of the fluid
domain. Some properties of the above motions are derived mathematically
in Section 4.

In general, fluids can also admit sound waves, which travel much more
rapidly than the waves listed in Table 2.2. However, the circulation of the
ocean is not affected by the propagation of sound waves within the ocean,

Figure 2.2. (a) External wave. (b) Internal wave. In each
case, the uppermost curve represents the free surface at the
top of the fluid, and the bottom line represents the bottom
of the fluid domain. The intermediate curves represent
surfaces of constant density within the fluid. The vertical
displacements are exaggerated for the sake of visibility.
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and these waves can be filtered from the equations of motion by using either
the hydrostatic approximation or the Boussinesq approximation (e.g., Gill
(1982), Griffies (2004)). With the latter approximation, the density of the
fluid is assumed constant in the momentum equations, except in the buoy-
ancy term in the vertical momentum equation.

In a numerical model of the general circulation of the ocean, the fastest
motions are typically the external gravity waves. These travel much more
rapidly than any of the other motions that are present in the system, and
their presence can cause serious problems with the efficiency of a numerical
algorithm. In the ocean modelling community it has therefore become com-
mon practice to split the external motions into a separate subsystem that is
solved by different techniques from the remainder of the system. This issue
is discussed in Section 5.1.

One implication of the space and time scales of the large-scale circulation
of the ocean is that the Coriolis term and lateral pressure gradient are
typically in an approximate balance, known as the geostrophic balance.
The same property also applies to the circulation of the atmosphere, and it
is one of the most prominent features of geophysical fluid dynamics. When
a system is in a geostrophically balanced state, the fluid flows along curves
of constant pressure. The concept of geostrophic balance is developed in
Section 4.3.

2.4. Subgrid-scale processes

If a numerical model of ocean circulation has a horizontal grid spacing of
0.1◦ latitude and longitude, for example, then the grid spacing near the
equator is roughly 10 km. For a global ocean model this is presently consid-
ered high resolution, and many climate-scale studies are currently run with
grid spacings that are much coarser, given the long time intervals that are
involved (Intergovernmental Panel on Climate Change 2001). However, the
dynamics of the ocean are influenced by the cumulative effects of turbulent
processes that occur on scales that are too small to be resolved explicitly
in a numerical model. For example, these scales can extend downward as
far as centimetres or less (Gill 1982, Bleck 2005). It is then necessary to
parametrize the large-scale effects of these subgrid-scale motions in terms
of the dependent variables that are used in the model.

These processes affect both the transport of momentum and the trans-
port of tracers. The term ‘tracer’ refers to a scalar-valued quantity that is
transported with the flow, such as potential temperature, salinity, or the
concentrations of various chemical or biological species. The first two of
these affect the density of the fluid and thus its dynamics, whereas the last
do not. These classes of tracers are labelled as active tracers and passive
tracers, respectively.
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On the scales of interest here, the mixing of momentum and tracers is
highly anisotropic, and it occurs primarily along directions that are ap-
proximately horizontal. This phenomenon has been described in terms of
directions of neutral buoyancy, which at any point in the fluid are defined
locally as lying in the plane of constant buoyancy through that point; this
plane is tangent to the surface of constant potential density through that
point, where in this case the potential density is referenced to the local pres-
sure (McDougall 1987). If a fluid parcel leaves such a neutral plane, then
the buoyancy contrast with the surrounding fluid tends to force the parcel
back towards that plane. On the other hand, adiabatic motions within neu-
tral planes encounter no such impediment, so mixing within neutral planes
is far more efficient than mixing across such planes. This picture is a local
description, and due to a lack of integrability it can be extended globally
to a concept of ‘neutral surface’ in only an approximate manner (Eden and
Willebrand 1999). The preceding issues are closely related to the problem of
choosing a thermodynamic variable that can be used as a vertical coordinate
for an isopycnic model, which is discussed in Section 3.1.

Empirical observations indicate that, in the interior of the ocean, the
rate of transport along the principal directions of mixing can be as much
as 108 times the rate of mixing in orthogonal directions (Ledwell, Watson
and Law 1993, Davis 1994). However, this discrepancy is not as large in
boundary layers, especially in the mixed layer at the top of the ocean.

Proper choices of subgrid-scale parametrizations have long been an area of
active research. Irreversible mixing processes tend to be modelled by some
kind of downgradient diffusion. For another example, Gent and McWilliams
(1990) and Gent, Willebrand, McDougall and McWilliams (1995) intro-
duced a parametrization of unresolved eddies that can be used, for instance,
to represent the transfer of potential energy into eddy kinetic energy when
slanted density surfaces are flattened. Extensive reviews of the problem of
subgrid-scale parametrization are given by Griffies (2004) and by Haidvogel
and Beckmann (1999).

3. The choice of vertical coordinate

A crucial decision in the construction of an ocean model is the choice of
vertical coordinate, and an obvious choice is the geometrical height z. This
coordinate is used, for example, in the Bryan–Cox class of ocean mod-
els. The development of the original Bryan–Cox model began in the 1960s
(Bryan 1969), and the various descendants of this model constitute what
is currently the most widely used class of ocean circulation models; a ge-
nealogy of this class is given by Semtner (1997). Examples include the
Modular Ocean Model (Griffies, Harrison, Pacanowski and Rosati 2004),
the Parallel Ocean Program (Dukowicz and Smith 1994), and the Parallel
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Ocean Climate Model (Semtner and Chervin 1992). Another example of
a z-coordinate model is the MIT general circulation model (Marshall, Hill,
Perelman and Adcroft 1997), which can represent both large-scale hydro-
static and small-scale nonhydrostatic processes.

Models that use z as the vertical coordinate are known as level models.
However, other possibilities for the vertical coordinate are also used, and
the purpose of this section is to describe and compare these alternatives.

3.1. Isopycnic coordinates

One alternative to z is isopycnic coordinates, for which the vertical coor-
dinate is the reciprocal of potential density or some other related quantity.
The term ‘isopycnic’ means ‘equal density’, which is an approximate state-
ment about the surfaces of constant vertical coordinate in this setting. In
the following discussion, the term ‘isopycnal’ refers to a surface of constant
potential density (or related quantity), and ‘diapycnal’ refers to transport
across such a surface.

In the setting of isopycnic coordinates, one seeks a quantity s that is
(approximately) conserved along particle paths. In other words, one wants
Ds/Dt ≈ 0, where D/Dt denotes the material derivative (see Section 4.2).
One also wants surfaces of constant s to be approximate neutral surfaces.
For the moment, assume Ds/Dt = 0 exactly, everywhere in the fluid. In
that event, a surface of constant s is a material surface; if a fluid parcel lies
initially in such a surface, then as time evolves the fluid parcel will retain
the same value of s and thus remain in the same surface. The elevation
of such a surface can vary with horizontal position and time, but any two
such surfaces will always enclose the same mass of fluid. If the fluid domain
is discretized with respect to s, for purposes of numerical solution, then
the fluid is divided into physical layers that do not mix. Water masses
with distinct physical properties are then distinguished automatically by
the choice of coordinate system. For this reason, isopycnic models are also
referred to as ‘layered’ models.

If s is chosen to be the reciprocal of potential density or a related quan-
tity, then the preceding statements are approximately true, except in the
vertically homogeneous mixed layer at the top of the ocean. If such a quan-
tity s is used as the vertical coordinate, then a graph such as Figure 2.1
provides a plot of the model’s vertical coordinate system.

However, potential density, as such, is not necessarily an optimal choice
for a vertical coordinate. For example, potential density is not exactly
a neutral variable, and under certain conditions potential density can be
non-monotonic as a function of z. In addition, if potential density is used
as the vertical coordinate, then the form of the lateral pressure forcing
in the momentum equations allows the possibility of numerical inaccuracy
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and even numerical instability. Several investigators have recently explored
these issues and have developed variations on potential density that are
more suitable for use in an ocean circulation model: see, e.g., Section 7.14
and the work of Sun et al. (1999), de Szoeke (2000), de Szoeke, Springer
and Oxilia (2000), and Hallberg (2005).

As noted in Section 7, the equation for conservation of mass in isopycnic
coordinates amounts to a statement about the thicknesses of the coordinate
layers. The vertical diffusion of heat and/or salt causes a vertical move-
ment of isopycnals relative to the fluid, and in the context of isopycnic
coordinates this movement can be viewed as an advection of fluid across a
coordinate surface.

The development of isopycnic coordinate ocean models began in earnest in
approximately the 1980s, in analogy to the usage of isentropic coordinates
in atmospheric models (Hsu and Arakawa 1990). Examples of isopycnic
ocean models are the Miami Isopycnic Coordinate Ocean Model (Bleck and
Smith 1990, Bleck 2002) and the Hallberg Isopycnal Model (Hallberg 1997).

3.2. Comparison of z and isopycnic coordinates

Over most of the real ocean, the warm upper layers are nearly isolated
from the colder deep layers, and the diapycnal transports between layers
are typically subtle. However, it is important to represent these transports
accurately. For example, the thermohaline circulation involves warm water
flowing to the far northern Atlantic, becoming colder and saltier, and then
sinking; the dynamics of this circulation could be misrepresented in a nu-
merical model if the model allows inaccurate or spurious diffusion of heat
or salt between the upper and lower regions.

In the case of isopycnic coordinates, the representation of the diapycnal
transport is under the explicit control of the modeller. In contrast, a level
(z-coordinate) model can implicitly allow spurious, non-physical diapycnal
transports. The transports of heat and salt are typically represented by
advection-diffusion equations, and computational algorithms for represent-
ing advection typically exhibit diffusion that is purely numerical. For the
terms involving horizontal advection, this numerical diffusion acts along sur-
faces of constant z. However, surfaces of constant z can intersect isopycnals,
as suggested by Figure 2.1, and this numerical diffusion can then cause ar-
tificial transport between different water masses (Griffies, Pacanowski and
Hallberg 2000b).

The diffusion terms in transport equations are another potential source
of spurious transport in level models. However, it is possible to rotate
the diffusion operator to yield a component tangent to isopycnals and a
component perpendicular to isopycnals, with the rate of diapycnal diffusion
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being orders of magnitude smaller than the rate of diffusion tangent to
isopycnals. This process is reviewed in detail by Griffies (2004).

The above difficulties are avoided if isopycnic coordinates are used, but
isopycnic coordinates have their own limitations. As seen in Figure 2.1,
isopycnals can intersect the upper or lower boundaries of the fluid, and
this implies a loss of vertical resolution, especially at the higher latitudes.
A loss of resolution is especially pronounced in the mixed layer at the upper
boundary of the ocean, as this layer is vertically homogeneous. In addition,
when an isopycnal intersects the top (bottom) of the fluid domain, the layer
above (below) the isopycnal approaches zero thickness. The vanishing of
layers introduces algorithmic complications that are described in Section 6.

3.3. Sigma-coordinates

Another vertical coordinate is the terrain-following coordinate σ, which is
chosen to vary linearly from σ = 0 at the upper boundary of the fluid to
σ = −1 at the bottom boundary. This coordinate allows for an accurate
representation of the topography of the ocean’s bottom, and it facilitates
the modelling of the bottom boundary layer.

However, σ-coordinate surfaces can intersect isopycnals, so the use of σ
allows the possibility of spurious diapycnal transport, in analogy to the case
of z-coordinates discussed above. Another limitation concerns the accurate
computation of the lateral pressure gradient. When the pressure is written
in σ-coordinates, the lateral pressure gradient ∇σp = (∂p/∂x, ∂p/∂y) ac-
tually represents differentiation along surfaces of constant σ, not constant
z. Conversion to a pressure gradient ∇zp that is truly horizontal requires
a correction term involving the hydrostatic balance and the slope of the σ-
surface (Griffies 2004). In some regions this correction can have a magnitude
comparable to that of ∇σp. In such situations ∇zp can be the difference
of two large quantities of opposite signs, and errors in those quantities can
dominate the result.

The use of σ as a vertical coordinate has been especially prominent in
limited-area regional and coastal modelling, as in the Princeton Ocean
Model (Blumberg and Mellor 1987) and the Regional Oceanic Modeling
System (Shchepetkin and McWilliams 2005).

3.4. Hybrid coordinates

As noted in Section 3.2, isopycnic coordinates suffer the disadvantage of los-
ing vertical resolution when isopycnals intersect the upper or lower bound-
aries of the fluid domain, and in addition they provide little resolution in
vertically homogeneous regions such as the mixed layer at the top of the
ocean. An attempt to overcome these limitations is represented by the
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class of hybrid coordinates, which combine features of isopycnic coordi-
nates, z-coordinates, and σ-coordinates. Examples of hybrid coordinate
models include the Hybrid Coordinate Ocean Model (Bleck 2002), which
is derived from the Miami Isopycnic Coordinate Ocean Model; HYPOP
(Dukowicz 2004); and Poseidon (Schopf and Loughe 1995).

In the general framework used in these models, each coordinate layer is
assigned a target density. (For convenience, the present subsection uses
the word ‘density’ to refer to a quantity related to potential density that
would be used in an isopycnic framework, as discussed in Section 3.1.) If
a given layer’s target density lies within the range that is represented in
the fluid at a given horizontal location and time, then the layer is assigned
that density, and the layer at that location is isopycnic. However, if a
given layer’s target density is not present in the fluid, then in a purely
isopycnic framework the layer would reduce to zero thickness; this would
be the case, for example, for a layer of relatively low density at a high
latitude. With a hybrid coordinate, such a layer is inflated in order to
have positive thickness and thus contribute to the vertical resolution of the
model. There is considerable freedom in the choice of methods for carrying
out this process, but the basic idea is to impose a minimum thickness and
then provide a recipe for the transition between the isopycnic state and the
state where the layers are purely geometric (Bleck 2005). This use of a
moving mesh resembles the Arbitrary Lagrangian–Eulerian (ALE) method
of Hirt, Amsden and Cook (1974), although the ALE technique does not
involve restoration to a target density.

Bleck (2002) recommends that any isopycnic layers that intersect bottom
topography not be inflated, as the computation of horizontal pressure gradi-
ents in that situation could be inaccurate for the same reasons discussed in
Section 3.3 for the case of σ-coordinates. Instead, the hybridization process
should focus on layers near the top of the fluid. He also recommends that
the minimum layer thickness be constant in the ocean’s interior in order
to avoid spurious dynamics resulting from the stretching of fluid columns
within a layer. However, in relatively shallow regions near coastlines, the
nonzero coordinate layers can be scaled with depth as with the terrain-
following σ-coordinate, since vortex columns are likely to extend over the
entire depth of the fluid in that case.

One difficulty with hybrid coordinates, as stated by Bleck (2002), is re-
lated to the seasonal cycle of the surface mixed layer. During winter, this
layer is relatively thick, due to strong mixing caused by storms and by
convective overturning. However, during the summer this forcing is much
weaker, and consequently much of the fluid in this layer reverts to a strati-
fied state. In a hybrid model, isopycnic layers are thus alternately destroyed
and then re-created near the top of the fluid as part of the annual cycle.
If the geometrically constrained, non-isopycnic layers are evenly distributed
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throughout a deep mixed layer during winter, for the sake of resolution,
then they may need to migrate a long distance upward in order to reach
their target densities in the spring or summer. This long migration im-
plies large transports of fluid between coordinate layers; numerical errors
in representing such transports can then cause a vertical dispersal of water
properties, such as the concentrations of tracers in various layers. Such a
dispersal could be alleviated by clustering the non-isopycnic layers near the
top during the winter, but this would imply an uneven vertical resolution
in that case.

The use of hybrid coordinates is relatively new and is a topic of current
research. Issues currently debated include the details of transport and in-
terpolation algorithms for carrying out the re-gridding from one state to the
next, and whether the re-gridding should be performed at every time step
or less frequently.

4. Analytical properties of solutions

We next describe some basic properties of solutions of the governing equa-
tions for the physical system considered here. This is done as a prelude to
discussing methods for solving those equations numerically.

4.1. Governing equations

Section 7 gives a detailed derivation of partial differential equations that
describe the conservation of mass, momentum, and tracers for a hydrostatic
and stratified fluid that is in motion relative to a rotating spheroid such as
the Earth. These equations are often called the ‘primitive equations’; the
term ‘primitive’ refers to the fact that the momentum equation is expressed
in terms of velocity or momentum. In contrast, certain simplified models
used for analytical or numerical studies employ dependent variables that
are derived from velocity, such as vorticity, divergence, and streamfunc-
tion (e.g., Pedlosky (1996), Miller (2006)). The general circulation models
quoted in this review largely employ the primitive equations, with the ex-
ception that nonhydrostatic effects are sometimes considered.

In Section 7 it is assumed that the horizontal position on the spheroid
is represented with general orthogonal curvilinear coordinates and that the
vertical coordinate is a generalized coordinate s that includes all of the
cases discussed in Section 3. However, in Section 7 the representation of
the diffusion of momentum and tracers assumes that the vertical coordinate
is an isopycnic coordinate, and for other vertical coordinates the diffusion
terms would have to be modified appropriately.

In Section 7 the equations are first derived for the continuous case. In
anticipation of solving these equations numerically, the equations are also
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integrated vertically between surfaces of constant s to yield equations in-
volving mass-weighted vertical averages. Such equations can be used in
a vertically discrete system obtained by partitioning the fluid into coordi-
nate layers.

The conservation of mass for the fluid is expressed in equations (7.32)–
(7.33) for the continuous case and in equation (7.38) for the case of a discrete
layer. In the latter case the dependent variable is essentially the mass per
unit horizontal area in the layer, and its evolution is determined by lateral
mass transport and by the vertical motions of layer interfaces relative to
the fluid. The conservation of mass for tracers in the fluid is described
by equations (7.106) and (7.107) for the continuous and vertically discrete
cases, respectively.

The conservation of horizontal momentum is expressed by the equations
(7.92) for the continuous case and by equations (7.101) and (7.104) for the
vertically discrete case. In the latter equations the dependent variables are
momentum density (velocity times the mass per unit horizontal area) and
the transport terms are written in flux form, which facilitates the usage of
(nearly) non-oscillatory advection schemes for those terms. The momen-
tum and mass equations can also be combined to yield equations for which
the unknowns are components of velocity instead of momentum density.
Also needed for the momentum equation is the relation (7.105), which is a
discretization of the hydrostatic condition in generalized coordinates. This
relation provides a means for communicating pressure effects between layers.

The equations for mass, tracers, and momentum are supplemented with
a nonlinear equation of state that relates density, salinity, pressure, and
temperature (or potential temperature). Discussions of the equation of state
are given, for example, by Gill (1982) and Griffies (2004).

In the derivations in Section 7, the horizontal coordinates are denoted
by x1 and x2. These quantities could be latitude and longitude or some
other suitable parameters. Increments ∆x1 and ∆x2 in these coordinates
correspond to spatial displacements m1∆x1 and m2∆x2, respectively, where
m1 and m2 are metric coefficients developed in Section 7. Also appearing
in that section is a quantity G = m1m2, which relates ‘area’ in the space
of the parameters x1 and x2 to physical area on the surface of the rotating
spheroid. The special case of Cartesian coordinates on a tangent plane is
then obtained by setting m1 = m2 = G = 1. This case is assumed in the
present section, for the sake of simplicity.

4.2. Shallow water equations

For the present discussion it is also useful to refer to the shallow water
equations, which describe the motions of a hydrostatic fluid of constant
density (e.g., Pedlosky (1987)). If the system described in Section 7 is
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discretized in the vertical by integrating over each of a set of coordinate
layers, then the result can be regarded as a stack of shallow water models,
with mechanisms for transferring mass, momentum, and pressure effects
between adjacent layers.

In order to describe the shallow water system for a single-layer fluid, let x
and y denote the horizontal coordinates; u(x, y, t) and v(x, y, t) denote the
x- and y-components of velocity, respectively, defined relative to a rotating
reference frame; ztop(x, y, t) denote the elevation of the free surface at the
top of the fluid; and h(x, y, t) = ztop(x, y, t) − zbot(x, y) denote the thick-
ness of the fluid layer, where zbot(x, y) denotes the elevation of the bottom
topography. Then

Du

Dt
− fv = −g

∂ztop

∂x
,

Dv

Dt
+ fu = −g

∂ztop

∂y
, (4.1)

∂h

∂t
+

∂

∂x

(
hu

)
+

∂

∂y

(
hv

)
= 0,

where g is the magnitude of the acceleration due to gravity. The material
derivative D/Dt is defined by D/Dt = ∂/∂t + u∂/∂x + v∂/∂y, and it rep-
resents the time derivative as seen by an observer moving with the fluid.
Since the velocity components u and v are defined relative to a rotating
reference frame, the material derivatives Du/Dt and Dv/Dt do not repre-
sent acceleration relative to an inertial frame, and the Coriolis terms −fv
and fu are included to yield such an acceleration. In the case of a rotating
spheroid, the Coriolis parameter f is given by equation (7.94), f = 2Ω sin θ,
where Ω is the angular rate of rotation and θ is the latitude.

The first two equations in (4.1) describe the conservation of momentum,
and in particular they state that the lateral acceleration of the fluid is
due to variations in the free-surface elevation, which correspond to lateral
variations of pressure within the fluid. The third equation in (4.1) describes
the conservation of mass, and for this constant-density fluid the equation
relates time variations in the layer thickness h to lateral variations in the
volume flux (hu, hv).

An alternate formulation of the pressure forcing is given by the following.
Define the Montgomery potential M by

M(x, y, z, t) = αp(x, y, z, t) + gz, (4.2)

where α is the specific volume (reciprocal of density ρ) of the fluid, and
p(x, y, z, t) is the pressure (Montgomery 1937). The hydrostatic condition
∂p/∂z = −ρg (see (7.8)) implies that M is independent of z in a layer of
constant density. Assuming that the pressure at the top of the fluid has
a constant value, such as atmospheric pressure, then ∂M/∂x = g∂ztop/∂x
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and ∂M/∂y = g∂ztop/∂y. The shallow water system (4.1) can then be
written as

Du

Dt
+ fu⊥ = −∇M,

∂h

∂t
+ ∇ ·

(
hu

)
= 0,

(4.3)

where u = (u, v), u⊥ = (−v, u), and ∇ = (∂/∂x, ∂/∂y). In addition,
−∇M = −1

ρ
∇p, which is a common form for representing the pressure

term in fluid dynamics.
If one were to model a stratified fluid as a stack of constant-density im-

miscible shallow water models, then the equations (4.3) could be applied in
each layer. At an interface between layers, the pressure p and elevation z
are continuous, so equation (4.2) implies ∆M = p∆α at the interface. Here,
∆M and ∆α are the jumps in M and α, respectively, across that interface.
The relation ∆M = p∆α is an analogue of the discretization (7.105) of the
hydrostatic condition in generalized coordinates.

If a continuously stratified fluid is modelled with a generalized vertical
coordinate, then the Montgomery potential enables gradients along slanting
coordinate surfaces to represent pressure forcing that is truly horizontal.
This idea is developed in Section 7.11.

4.3. Geostrophic balance

A striking feature of large-scale flows in the ocean and atmosphere is the
approximate balance between the Coriolis and pressure terms, which causes
the fluid to flow along curves of constant pressure. Here this ‘geostrophic
balance’ is derived, in the context of the shallow water equations, by using
an approximate scale analysis.

Let T , L, and U denote numbers that represent typical scales for time,
horizontal distance, and horizontal velocity, respectively. A representative
scale for the nonlinear terms in the momentum equation in (4.3) (i.e., uux+
vuy and uvx+vvy) is then UU/L, and a representative value for the Coriolis
term is fU . The ratio of these scales is the Rossby number Ro = U/(fL).

As noted in Section 7.15, the Coriolis parameter is zero at the equator,
and at the middle and high latitudes of the Earth this parameter is on the
order of 10−4 sec−1. A velocity scale U = 1 m/sec represents a strong cur-
rent, and a length scale L = 100 km = 105 m represents the approximate
width of a western boundary current. With these scales, and with a Cori-
olis parameter equal to 10−4 sec−1, the Rossby number is 0.1. However,
for basin-scale flows, U is typically smaller and L is larger, so the Rossby
number is much smaller in that case. Similarly, the time derivative in the
momentum equation in (4.1) has the scale U/T , and the ratio of this scale
to the scale of the Coriolis term is 1/(fT ). If the time, space, and length
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scales are related by U = L/T , then the parameter 1/(fT ) is equal to the
Rossby number. If a process has a time scale of a day (86400 seconds),
then 1/(fT ) ≈ 0.1 for the middle and high latitudes; for a time scale of 100
days, 1/(fT ) ≈ 10−3. It then follows that, for large-scale flows, the time
derivative and nonlinear terms in the momentum equation are much smaller
than the Coriolis term, except near the equator.

A remaining consideration is the size of a possible diffusion term. In
geophysical fluid dynamics it is common practice to include some sort of
diffusion term in the momentum equation to represent the large-scale effect
of subgrid-scale mixing. For the system (4.3), such a term could take the
form AH∇2u, where ∇2 denotes the Laplace operator and AH is an eddy
viscosity coefficient. (Also see Section 7.12.) A scale for the diffusion term
is then AHU/L2, and the ratio of the scale of the diffusion term to the scale
of the Coriolis term is given by the Ekman number, E = AH/(fL2). A
physically appropriate choice of AH involves considerable uncertainty; for
example, values in the range 10 m2/sec to 104 m2/sec have been proposed
(Pedlosky 1987). A horizontal length scale L = 100 km = 105 m and an
eddy viscosity AH = 104 m2/sec leads to an Ekman number on the order
of 10−2. Larger length scales and/or smaller viscosities produce smaller
Ekman numbers. For large-scale flows, the diffusion term would therefore
be much smaller than the Coriolis term, except near the equator.

The only remaining term in the momentum equation is the pressure term
−g∇ztop = −∇M . Since the other terms are much smaller than the Coriolis
term, the pressure term and the Coriolis term must be approximately equal,
i.e., the flow is approximately in a geostrophic balance. If this balance is
exact, then fu⊥ = −∇M , or

−fv = −g
∂ztop

∂x
,

fu = −g
∂ztop

∂y
.

(4.4)

In this case the horizontal velocity vector u = (u, v) is orthogonal to ∇ztop.
If the fluid is viewed from the top, then the fluid is seen to flow along
contours of constant free-surface elevation ztop, which coincide with contours
of constant pressure within the fluid. The geostrophic balance is also seen
in weather maps, which show upper-level winds blowing along isobars. In
general, a geophysical fluid flow is not in a state of exact balance, and the
evolution of the flow is driven by small departures from a balanced state.

The geostrophic balance may seem counter-intuitive, as everyday experi-
ence suggests that fluid should flow from a region of high pressure to a region
of low pressure, not along curves that separate the two regions. However,
the key point is that the flows considered here are dominated by the effects
of rotation. For a simple analogy, try walking in a straight line on a rotating
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merry-go-round; this ‘straight’ path is curved relative to the ground, and a
force from the side is required to keep you on that straight/curved path.

4.4. Potential vorticity and Rossby waves

The vorticity of a fluid flow is the curl of the velocity field. If a fluid is
stationary relative to a rotating spheroid, then the vorticity of the fluid
relative to an inertial reference frame is 2Ω, where Ω = |Ω| is the angular
rate of rotation, the direction of the vector Ω aligns with the axis of rotation,
and the direction of Ω and the direction of rotation are related by the right-
hand rule. If a fluid is in motion relative to the spheroid, then the relative
velocity gives rise to a vorticity relative to the rotating reference frame. In
the case of the shallow water equations (4.1) and (4.3) on a tangent plane,
the relative vorticity is ζk, where k is the unit vector in the (local) upward
direction, and

ζ(x, y, t) =
∂v

∂x
− ∂u

∂y
.

However, as noted in Section 7.15, the Coriolis parameter f is the local
vertical component of the planetary vorticity 2Ω. Therefore ζ + f is the
local vertical component of the absolute (relative plus planetary) vorticity.
In the present subsection we develop a conservation property associated
with this quantity.

For the sake of simplicity, this property is developed in the context of the
shallow water system (4.1), (4.3). The momentum equations in that system
can be written in the form

∂u

∂t
+

∂

∂x

[
1

2

(
u2 + v2

)]
− (ζ + f)v = −∂M

∂x
,

∂v

∂t
+

∂

∂y

[
1

2

(
u2 + v2

)]
+ (ζ + f)u = −∂M

∂y
;

(4.5)

that is, the nonlinear terms are written in terms of the relative vorticity
ζ and the kinetic energy per unit mass, 1

2(u2 + v2). Now compute the x-
derivative of the second equation minus the y-derivative of the first equation.
The result is

∂ζ

∂t
+ u

∂

∂x

(
ζ + f

)
+ v

∂

∂y

(
ζ + f

)
+

(
ζ + f

)(∂u

∂x
+

∂v

∂y

)
= 0.

A comparison with the mass equation in (4.1), coupled with the fact that f
is independent of t, yields

D

Dt

(
ζ + f

)
−

(
ζ + f

)1

h

Dh

Dt
= 0,
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or
D

Dt

(
ζ + f

h

)
= 0. (4.6)

The quantity (ζ + f)/h is known as the potential vorticity, and it is the
ratio of the absolute vorticity to the layer thickness.

Equation (4.6) states that the potential vorticity is constant, when seen
by an observer moving with the fluid. For example, if a column of water
moves laterally and experiences a change in h, then the absolute vorticity
ζ + f changes, due to vortex stretching.

Of particular interest is the effect of variations in the Coriolis parame-
ter on the relative vorticity. Suppose that ζ is initially zero, and consider a
region where the bottom topography zbot is constant, so that the layer thick-
ness h is nearly constant. If a water column moves northward, for example,
then the resulting increase in f causes a decrease in ζ, which corresponds
to a clockwise rotation when seen from above. This local rotation causes
water columns to the east and west to move southward and northward,
respectively. The resulting changes in relative vorticity for those columns
tend to force the first column to return towards its original position. The
resulting wave motion is known as a Rossby wave, and for this wave the
restoring mechanism is based on vorticity instead of gravity. Variations in
bottom topography have an analogous effect, and a similar discussion of
topographic Rossby waves is given by Pedlosky (1987). The existence of
Rossby waves depends fundamentally on variations in bottom topography
and/or the variation of the Coriolis parameter with latitude.

Detailed analyses of the dynamics of Rossby waves are given in several ref-
erences, e.g., Gill (1982) and Pedlosky (1987, 2003). These waves propagate
with low frequencies, and the resulting time derivatives in the system (4.1)
are so small that a Rossby wave is in an approximate geostrophic balance;
as the bumps and depressions in the free surface propagate, the velocity
field is tangent to contours of constant elevation.

The phase velocities of Rossby waves are always westward. Relatively long
Rossby waves are nearly nondispersive, but relatively short Rossby waves
are strongly dispersive with eastward group velocity. Long Rossby waves
then propagate westward from the eastern boundaries of ocean basins, and
short Rossby waves propagate eastward (in the sense of group velocity) from
western boundaries. The latter propagate more slowly, and the resulting
accumulation of short waves near the western boundaries helps to explain
the east–west asymmetry in ocean circulation patterns (Gill 1982).

4.5. External and internal modes

A stratified fluid can admit both external and internal wave motions. Ex-
ternal waves and internal waves propagate at very different speeds, and the
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separation of time scales has a major impact on the process of solving the
governing equations numerically. Internal waves cannot be modelled with
the shallow water equations, since those equations apply to a fluid of con-
stant density, so instead the present discussion refers to a simple linearized
version of the governing equations that are developed in Section 7 for a
stratified fluid. The following analysis is similar to one given by Higdon and
Bennett (1996).

For the sake of simplicity, assume that the vertical coordinate s is the
specific volume α (reciprocal of density) over the range αbot ≤ α ≤ αtop and
that ṡ = α̇ = 0, i.e., α is constant in time for each fluid parcel; an analysis of
external and internal modes with a more general equation of state is given
by Dukowicz (2006). In order to obtain a linearized model, assume that the
bottom of the fluid domain is level and that the flow is a small perturbation
of a static state having a level free surface at the top of the fluid and level
surfaces of constant density within the fluid. Let p̃(α) denote the pressure
in the fluid at the stationary state, and let M̃(α) denote the Montgomery
potential at that state. Then let p(x, y, α, t) and M(x, y, α, t) denote the
perturbations in those quantities from the static values. The pressure and
Montgomery potential at an arbitrary state are then p̃(α)+ p(x, y, α, t) and
M̃(α) + M(x, y, α, t), respectively, with the present notation. Also assume
that the viscosity and applied stresses are zero. Under these assumptions
the governing equations from Section 7 for a continuously stratified fluid
simplify to

ut − fv = −Mx,

vt + fu = −My,

pαt + p̃α(α)(ux + vy) = 0,

Mα = p.

(4.7)

The subscripts denote partial derivatives. The first two equations in (4.7)
are the momentum equations (7.92) as applied to the present case, the third
equation is the equation (7.32) for conservation of mass, and the fourth
equation is the hydrostatic condition (7.65).

Upper and lower boundary conditions for the system (4.7) can be for-
mulated as follows. At the top of the fluid the pressure is equal to the
atmospheric pressure, which is assumed here to be a constant. The pertur-
bation in pressure is then zero, so in the present notation

Mα = p = 0 if α = αtop. (4.8)

At the bottom of the fluid the perturbation in elevation is zero, so the
perturbation in Montgomery potential satisfies

M = αp = αMα if α = αbot. (4.9)



Numerical modelling of ocean circulation 407

Special solutions of the system (4.7)–(4.9) can be constructed by separat-
ing the vertical dependence from the time and horizontal dependences. Let
u(x, y, α, t) = û(x, y, t)φ(α), v(x, y, α, t) = v̂(x, y, t)φ(α), and M(x, y, α, t) =

M̂(x, y, t)φ(α). Then p(x, y, α, t) = M̂(x, y, t)φα(α), and the system (4.7)
becomes

ût − fv̂ = −M̂x,

v̂t + fû = −M̂y, (4.10)

M̃t + (1/λ)(ûx + v̂y) = 0,

where λ and φ satisfy

φαα = λp̃α(α)φ(α) if αbot < α < αtop,

φα = 0 if α = αtop, (4.11)

φ = αφα if α = αbot.

The Sturm–Liouville problem (4.11) admits a countable set of eigenvalues
and a complete set of eigenfunctions. The eigenvalues are all positive, since
p̃α < 0, and they can be denoted by 0 < λ0 < λ1 < λ2 < . . . . In the general
solution of the system (4.7), u can be represented as

u(x, y, α, t) =
∞∑

j=1

û(j)(x, y, t)φ(j)(α), (4.12)

where φ(j) is an eigenfunction corresponding to eigenvalue λj , and û(j)(x, y, t)
is obtained from the reduced system (4.10) with λ = λj . Orthogonality of
the eigenfunctions with respect to the weight function p̃α implies

û(j)(x, y, t) =

∫ αtop

αbot
u(x, y, α, t) φ(j)(α) p̃α(α) dα
∫ αtop

αbot
φ(j)(α)2 p̃α(α) dα

. (4.13)

Similar expansions apply to v, M , and p = Mα.
The reduced system (4.10), which describes the dependence with respect

to (x, y, t), has the form of the linearization of the shallow water equations
(4.1). In the case where the Coriolis parameter f is constant, this system
admits gravity wave solutions with speed c =

√
1/λ. In the case where f

varies with latitude, the gravity waves are still admitted, and in addition
Rossby waves can also be present (Gill 1982, Pedlosky 1987).

The vertical structures of the modal solutions are determined by the
eigenfunctions φ(j), which can be visualized as indicated in Figure 4.1.
Assume that the α-axis is vertical and that the φ-axis is horizontal. The
upper boundary condition φα(αtop) = 0 states that the tangent line to
the graph of φ is vertical when α = αtop. The lower boundary condition
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Figure 4.1. Graphs of eigenfunctions which give the vertical
dependences in modal solutions of the linearized system (4.7).
The eigenfunction φ(0) corresponds to the external mode, and
φ(1) and φ(2) correspond to the first two internal modes.
The dotted lines illustrate the lower boundary condition
φα(αbot) = φ(αbot)/αbot. In these plots, the α-axes are not to
scale, as typically (αtop − αbot)/αbot ≈ 10−2. On the interval
αbot ≤ α ≤ αtop, the relative variation in φ(0) is bounded by
the relative variation in α.

φα(αbot) = φ(αbot)/αbot states that the tangent line to the graph of φ
at α = αbot passes through the origin. Without loss of generality, assume
φ(αtop) = 1, and consider the variation of φ(α) as α varies from αtop down-
ward towards αbot. If λ > 0 then φαα and φ have opposite signs, since
p̃α < 0, so the graph of φ always bends so as to return toward the α-axis.
For a given value of φ(α), a larger value of λ yields a larger value for the
concavity φαα.

In the case of the smallest eigenvalue λ0, the corresponding eigenfunction
φ(0) is monotone and maintains constant sign, and its derivative is largest
when α = αbot. This condition on the derivative, coupled with the mean
value theorem, implies

∣∣φ(0)(αtop) − φ(0)(αbot)
∣∣ <

φ(0)(αbot)

αbot

∣∣αtop − αbot

∣∣. (4.14)

It follows that the relative variation of the eigenfunction φ(0) over the inter-
val αbot ≤ α ≤ αtop is less than the relative variation of α over that interval.
In the ocean, α typically varies by at most a few per cent over the vertical
extent of a water column. With such behaviour of α, the eigenfunction φ(0)

is nearly constant.
For the eigenvalue λ1, the corresponding eigenfunction φ(1) changes sign

once; in general, the eigenfunction φ(j), corresponding to the eigenvalue
λj , changes sign j times. The orthogonality of eigenfunctions with respect
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to p̃α, coupled with the observation that φ(0) ≈ 1, implies

∫ αtop

αbot

φ(j)(α) p̃α(α) dα ≈
∫ αtop

αbot

φ(j)(α) φ(0)(α) p̃α(α) dα = 0 (4.15)

for j ≥ 1. The mass-weighted vertical average of φ(j) is thus nearly zero, if
j ≥ 1.

A modal solution for j = 0 is an external mode, whereas the modes
for j ≥ 1 are internal modes. To see this, partition the interval αbot ≤
α ≤ αtop into layers separated by surfaces of constant α. For the case

j = 0, the horizontal velocity divergence ux + vy = φ(0)(α)(ûx + v̂y) is
nearly independent of depth. If the third equation in the linearized system
(4.7) is integrated with respect to α over one of those layers, the result is
that ∂/∂t(∆p/∆p̃) is approximately independent of depth. Here, ∆p and
∆p̃ represent the vertical differences of p and p̃, respectively, across the
layer. It follows that if j = 0 then all layers are thickened or thinned by
approximately the same proportion, for given (x, y, t). The behaviour of
the free surface at the top of the fluid then indicates the nature of the wave
motion throughout the interior.

On the other hand, if j ≥ 1 then the horizontal divergence φ(j)(α)(ûx+v̂y)
varies in sign with depth, so some layers are thickened and some are thinned,
for given (x, y, t). The wave motion is then manifested by undulations of
surfaces of constant density within the fluid. Furthermore, a vertical inte-
gration of the third equation in the linearized system (4.7) over the entire
depth of the fluid, coupled with the zero-integral condition (4.15), implies
that the elevation of the free surface remains nearly unperturbed if j ≥ 1.

Estimates of wave speeds can be obtained as follows. Vertical integration

of the equation φ
(0)
αα = λ0p̃α(α)φ(0)(α) over the interval αbot ≤ α ≤ αtop,

combined with the boundary conditions in (4.11) and the condition φ(0) ≈ 1,
implies that the gravity-wave speed for the external mode is c0 =

√
1/λ0 ≈√

αbot

(
p̃bot − p̃top

)
. However, the hydrostatic condition ∂p/∂z = −ρg (see

(7.8)) implies αbot

(
p̃bot − p̃top

)
≈ gH, where H is the total depth of the

fluid. The speed of gravity waves as seen in the linearized shallow water
equations is

√
gH, which is approximately the speed seen in the external

mode. If, for example, H = 4000 m, then c0 ≈ √
gH ≈ 200 m/sec. On the

other hand, the speeds of internal gravity waves in the ocean are typically
at most a few metres per second (Gill 1982).

The external mode is essentially a two-dimensional phenomenon, in the
sense that it can be approximately described by functions of (x, y, t), and
the dynamics of this mode are very similar to those seen in the linearized
shallow water equations. Furthermore, the velocity field for the external
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mode is obtained by the projection (4.13) for the case j = 0. Since φ(0) ≈ 1,
equation (4.13) implies

û(0)(x, y, t) ≈ 1

p̃bot − p̃top

∫ αtop

αbot

u(x, y, α, t)
(
−p̃α(α)

)
dα, (4.16)

and an analogous equation holds for v̂(0). The velocity field in the external
mode is thus approximately given by the mass-weighted vertical average of
the horizontal velocity field for the three-dimensional system. These obser-
vations form the basis for techniques for isolating the fast dynamics into a
relatively simple two-dimensional subsystem, as described in Section 5.1.

The preceding analysis assumes that the fluid is continuously stratified.
One can also consider a vertical discretization of the system (4.7), or equiva-
lently, a multi-layer stack of shallow water models. In that event, the system
admits an external mode and finitely many internal modes. For example,
Higdon (2005) developed a test problem involving linearized flow in a two-
layer fluid in a straight channel having a level bottom, with the Coriolis
parameter varying linearly in the cross-channel direction y. In this case the
system admits both external and internal waves, and within each class are
Rossby waves and gravity waves. The gravity waves include Poincaré waves
and Kelvin waves; the former are approximately sinusoidal in y, whereas the
latter decay exponentially from the one or another of the solid boundaries.
The domain is discretized in space, and after a Fourier transform in time and
in the along-channel direction x, the time frequencies and y-dependences are
obtained via numerical solution of a matrix eigenvalue problem. The result-
ing modal solutions can then be used to test numerical methods for the
time splittings that are discussed in Section 5.1. In particular, the exter-
nal and internal modal solutions make it possible to test the fast and slow
subsystems independently.

5. Time discretization

The present section outlines some aspects of time discretization for numer-
ical models of ocean circulation. Included is a description of the process of
splitting the fast and slow dynamics into separate subsystems and a discus-
sion of some time-stepping methods.

5.1. Barotropic–baroclinic splitting

As noted in Section 2.3, the fastest motions in a numerical model of ocean
circulation are typically the external gravity waves, and these travel much
more rapidly than any of the other motions that are present in the system. If
an explicit time discretization is used to solve a system of partial differential
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equations numerically, then the time step ∆t is limited in terms of the
fastest motions that can be present. However, in the present case the fastest
motions are essentially two-dimensional, as demonstrated in Section 4.5.
The numerical solution of a complex three-dimensional system is therefore
severely constrained by a special set of two-dimensional motions.

It has therefore become common practice to split the dynamics of the
system into two subsystems, one a relatively simple two-dimensional sys-
tem that represents the fast motions, and the other a relatively complex
three-dimensional system that represents the remaining (slow) processes.
The latter system is solved explicitly with a relatively long time step that is
appropriate for resolving the slow motions. The fast system is either solved
implicitly with the same time step or explicitly with short steps. The result-
ing algorithm is much more efficient than solving the entire unsplit system
explicitly with short steps.

Such a splitting is traditionally referred to as a barotropic–baroclinic split-
ting. In classical fluid dynamics, a flow is labelled barotropic if the density
is a function of pressure only (Pedlosky 1987), and it is labelled baroclinic
otherwise. In the case of a stratified fluid, a barotropic state implies that the
surfaces of constant density coincide with the surfaces of constant pressure.
If a fluid exhibits only an external wave, then all fluid layers thicken or thin
by approximately the same proportion, at a given horizontal location and
time (see Figure 2.2). The surfaces of constant density within the fluid thus
have essentially the same shape, with the amplitudes of variation increasing
from the bottom of the fluid domain to the top. Each such surface remains
approximately the same distance below the free surface at the top of the
fluid, at all horizontal locations and times, so the flow is approximately
barotropic. On the other hand, this is not the case with an internal wave,
and in that case the fluid is in a baroclinic state. In the following, the
fast and slow subsystems are referred to as the barotropic and baroclinic
equations, respectively.

The early versions of the z-coordinate Bryan–Cox class of ocean models
used a rigid-lid boundary condition w = 0 at the top of the fluid, where
w is the vertical component of fluid velocity. This assumption has the ef-
fect of replacing the fast speed of external gravity waves with an infinite
speed, and a two-dimensional elliptic partial differential equation for this
mode must then be solved at each (long) time step. More recent efforts
have replaced the rigid lid with a free-surface boundary condition, which
restores the finite speed of propagation for the barotropic subsystem. This
system is obtained by a vertical integration of the three-dimensional mo-
mentum and mass equations, and it has a structure similar to that of the
shallow water equations. Killworth, Stainforth, Webb and Paterson (1991)
solved the barotropic equations explicitly with short steps, whereas Dukow-
icz and Smith (1994) solved the barotropic equations implicitly with same
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(long) time step as for the baroclinic equations. A hybrid-coordinate update
of the latter model solves the barotropic equations explicitly with short
steps (Dukowicz 2004). The current version of the Modular Ocean Model
also solves the barotropic equations explicitly with short steps (Griffies
et al. 2004).

A barotropic–baroclinic splitting for isopycnic models was developed by
Bleck and Smith (1990). With that splitting, the barotropic velocity
ū(x, y, t) is the mass-weighted vertical average of the horizontal velocity
u(x, y, s, t) =

(
u(x, y, s, t), v(x, y, s, t)

)
appearing in the full three-dimen-

sional system, in analogy to the approximate projection onto the external
mode given in (4.16). A baroclinic velocity is then given by u′(x, y, s, t) =
u(x, y, s, t)− ū(x, y, t), so that u = ū+u′. Here, the mass-weighted vertical
averages are the same as those used in Section 7.16, except that the averages
in that section involve a single coordinate layer, whereas in the present case
the averages are taken over the entire depth of the fluid. The splitting of
the mass field is based on the idea that an external wave causes all layers
to thicken or thin by approximately the same proportion. In particular, the
pressure is represented as p(x, y, s, t) =

(
1 + η(x, y, t)

)
p′(x, y, s, t), where p′

represents the baroclinic component of the pressure, and η is a barotropic
mass variable that represents the relative thickening of coordinate layers.

With this formulation, the splittings of the velocity and mass fields are
inexact, even in the linearized case where one can discuss decompositions of
the solution into external and internal modes. In addition, as formulated by
Bleck and Smith (1990), the pressure forcing in the barotropic momentum
equation is the same as in the shallow water equations for a fluid of con-
stant density, and this introduces a further approximation that contributes
to the inexactness of the splitting. This inexactness implies that the baro-
clinic equations can represent a (small) portion of the fast external motions,
even though these equations are intended to represent the slow motions. If
the baroclinic equations are solved explicitly with a long time step that is
appropriate for resolving the slow motions, then the Courant–Friedrichs–
Lewy condition is violated, strictly speaking. This CFL violation raises the
possibility of numerical instability.

Higdon and Bennett (1996) showed that this instability can in fact occur
with the splitting of Bleck and Smith (1990), as applied to the linearized
case. However, Higdon and de Szoeke (1997) subsequently showed that the
instability can be removed by modifying the barotropic momentum equation
so as to replace the pressure-gradient term from the shallow water equations
with the mass-weighted vertical average of ∇M = (∂M/∂x, ∂M/∂y). In
this case the splitting is still inexact, due to the inexactness in splitting the
velocity and mass fields. However, the amount of ‘fast’ energy in the ‘slow’
baroclinic equations is low enough to obtain stability, even in the face of the
formal violation of the CFL condition. In other words, the splitting of the
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external and internal modes does not need to be exact, but it does need to
be sufficiently accurate.

The analysis of external and internal modes in Section 4.5 assumes that
the bottom of the fluid domain is level. Without this assumption, the lin-
earized system (4.7) is not separable, and the solutions do not decompose
exactly into external and internal modes. In addition, realistic ocean cir-
culation models include nonlinearity, and this provides another mechanism
for interactions between fast and slow motions. Nonetheless, in the ocean
modelling community it is common practice to split the dynamics of the
governing equations based on the preceding ideas, even for nonlinear prob-
lems, and this approach has proved to be an effective method for gaining
computational efficiency while maintaining numerical stability.

5.2. Leapfrog time-stepping

One time-stepping method that has been widely used in geophysical fluid
dynamics is the leapfrog method. For example, this method is used to solve
the baroclinic equations in many versions of the Bryan–Cox class of models
(Griffies et al. 2000a) and in the Miami Isopycnic Coordinate Ocean Model
(Bleck et al. 1992). The leapfrog method is a three-level scheme based on
centred differencing about the middle time level, and for an equation of the
form ut = F (t, u) it can be written in the form un+1 = un−1 +2∆tF (tn, un).
Here, un is an approximation to u(tn).

The leapfrog method is straightforward to implement, but it suffers the
disadvantage of allowing a nonphysical computational mode consisting of
sawtooth oscillations in t. For example, in the special case F = 0 the
leapfrog method for ut = F (t, u) is simply un+1 = un−1, and this scheme
allows both constant solutions and sawtooth solutions of the form un =
c(−1)n. In a nonlinear model such a mode, once stimulated, can grow
without bound unless measures are taken to suppress the oscillations. One
widely used method for doing this is the Asselin filter (Asselin 1972), which
uses a weighted average defined by φ̄n := γφn+1 +(1−2γ)φn +γφ̄n−1. Here,
γ is a positive constant, and φ̄ is a smoothed version of the quantity φ. After
the quantity φn+1 is computed, the filter is then used to smooth the solution
at time tn. The leapfrog method has order two, but using the Asselin filter
reduces the method to first-order accuracy (Durran 1999). An alternative to
this filter is given by Dukowicz and Smith (1994), who periodically interrupt
the computation in order to average the solution between consecutive time
levels. This is done for two consecutive pairs of time levels, and the leapfrog
method is then restarted from the values obtained for the half-integer points.

If a filter succeeds in maintaining numerical stability but does not sup-
press the computational mode completely, then numerical difficulties can
still persist. For example, Griffies (2004) describes some experience with
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the Modular Ocean Model using leapfrog time-stepping and an Asselin
filter. In those experiments, grid noise remained and was especially preva-
lent near the equator, and it caused a complete reversal of the directions
of strong zonal (east–west) currents in that region from one time step to
the next.

Additional difficulties arise if a computational mode is present and if
the state of a model is altered when certain variables reach threshold val-
ues (Rainer Bleck, personal communcation). For example, in a hybrid-
coordinate model, a coordinate layer is in an isopycnic state if and only if
its target density lies within the range of densities that actually exist in the
fluid. If this state is updated at each time step, and if the target density
lies near the boundary of that range but the computed density field displays
sawtooth oscillations in time, then the layer may be in one state at the even
time steps and in another state at the odd steps.

5.3. Two-level time-stepping

The preceding difficulties can be avoided if a model employs a time-stepping
scheme that uses only two time levels, as such a scheme cannot support the
sawtooth mode described above. This matter has been a subject of recent
attention.

For example, two-level methods are now available as options, along with
the leapfrog method, in the Modular Ocean Model (Griffies 2004). The two-
level method for the baroclinic equations is staggered in time, with velocity
defined at integer time steps, and tracers, pressure, and density defined at
half-integer steps. The staggered time grid enables second-order centred
differencing without allowing the computational mode associated with the
leapfrog method. In the case of the barotropic equations, the two-level
method is a predictor–corrector method.

Hallberg (1997) developed a two-level predictor–corrector scheme for lay-
ered models. This method involves a prediction and correction of all of the
dependent variables in the baroclinic and barotropic subsystems, and var-
ious weighted averages are used during the correction steps. In addition,
Shchepetkin and McWilliams (2005) give an extensive survey of a variety
of two-level and multi-level time-stepping methods.

A two-level non-staggered method for layered models was developed by
Higdon (2002, 2005). After an initial forward-Euler prediction of the baro-
clinic velocity from time tn to time tn+1, all time discretizations for the
baroclinic equations involve centred differencing and unweighted averaging
about the middle of the time interval [tn, tn+1]. The Coriolis terms are
implemented implicitly; if the horizontal velocity components u and v are
defined at different points, as on the C-grid (Section 6.1), then the Corio-
lis terms are implemented with a simple iteration. In a linearized analysis



Numerical modelling of ocean circulation 415

where the barotropic equations are assumed to be solved exactly in t, the
algorithm is stable and essentially nondissipative. In some experiments with
a nonlinear model and a standard dissipative advection scheme for mass and
momentum, the algorithm behaves stably for very long times with zero ex-
plicit viscosity.

6. Spatial discretization and related issues

This section discusses some topics involving spatial discretization, the nu-
merical simulation of advection, and the numerical solution of the momen-
tum equations.

6.1. Horizontal grids: quadrilaterals

In existing numerical models of ocean circulation, it is commonplace to use
finite difference and/or finite volume methods on quadrilateral spatial grids.
This subsection focuses on such discretizations, and some alternatives are
discussed in the following subsection.

A natural choice for a horizontal coordinate system for the Earth is the
one based on latitude and longitude. However, this system admits a sin-
gularity at the North and South Poles, as the metric coefficient relating
increments in longitude to increments in space tends to zero at those lo-
cations (see Section 7.18). This singularity is not an issue in the case of
the South Pole, which lies on land, but it in the case of the North Pole the
singularity lies within the fluid domain for a global model. If a spatial dis-
cretization is based on this coordinate system, then the convergence of grid
lines causes substantial difficulties with explicit time-stepping methods, as
the Courant–Friedrichs–Lewy condition implies that the time increment ∆t
must tend to zero as the spatial increment tends to zero.

This problem can be avoided with a coordinate system that does not
place any singularities within the fluid domain. For example, Smith, Kortas
and Meltz (1995) developed a class of orthogonal curvilinear grids with two
coordinate poles that can be placed at arbitrary locations. In practice, the
south coordinate pole can be located at the south geographical pole, and the
latitude–longitude grid is deformed smoothly so that the north coordinate
pole is located on a land mass.

With a coordinate system developed by Murray (1996), the coordinates
are latitude and longitude south of a specified latitude. The remaining
northern portion of the globe is covered with an orthogonal coordinate sys-
tem that involves two poles that can be located on land. Models that have
employed this grid include the Parallel Ocean Program, the Modular Ocean
Model, and the Hybrid Coordinate Ocean Model. Figure 6.1 shows an ex-
ample of such a grid.
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Figure 6.1. Tripolar grid. To the south of a specified
latitude, the coordinate system uses latitude and longitude.
To the north of that latitude, each line of constant longitude
connects smoothly to a longitude line on the other side of
the pair of coordinate poles. (Figure provided by Philip
Jones, Los Alamos National Laboratory.)

A horizontal coordinate system developed by Rancic, Purser and Mesinger
(1996) employs a conformally expanded spherical cube. With this formu-
lation, a cube is inscribed within a sphere, and a rectangular mesh on the
surface of the cube is then projected conformally onto the sphere. The
resulting mesh on the sphere is orthogonal, except at the singular points
corresponding to the corners of the cube. Adcroft, Campin, Hill and Mar-
shall (2004) employ finite volume methods for the equations for mass and
momentum on this grid, and they demonstrate that the singularities cause
no difficulty in their setting. They also employ a re-scaling of the coor-
dinates on the sphere so that the resulting grid is more uniform than the
grid of Rancic et al. (1996). A non-orthogonal expanded spherical cube was
used by Rossmanith (2006) to develop a finite volume method, based on the
framework of LeVeque (2002), for hyperbolic systems on a sphere.
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Figure 6.2. Arrangements of dependent variables on the
B-grid and C-grid. The symbol m refers to mass variables
such as density, layer thickness, and pressure; and u and v
are the x- and y-components of velocity, respectively.

Relative to a given grid, there are several options for specifying the points
where the various dependent variables are defined. For a rectangular grid,
Winninghoff (1968) and Arakawa and Lamb (1977) analysed five such ar-
rangements, which they labelled A–E. These grids are also illustrated and
discussed in other references, such as Dukowicz (1995) and Haidvogel and
Beckmann (1999). With the A-grid, all dependent variables are defined at
the centres of grid cells. In the case of the B-grid, mass variables are defined
at the centres of grid cells, and the components of velocity are defined at the
corners. With the C-grid, the normal components of velocity are defined at
the centres of the edges of the mass cells. That is, if u and v denote the x-
and y-components of velocity, respectively, then the values of u are defined
at the centres of edges corresponding to minimal and maximal x, and the
values of v are defined at the centres of the edges corresponding to minimal
and maximal y: see Figure 6.2.

Among the Arakawa grids, the B-grid and the C-grid are the most com-
monly used in ocean models. For example, the B-grid is used throughout
the Bryan–Cox class of level models. Models that use the C-grid include the
Miami Isopycnic Coordinate Ocean Model, the Hybrid Coordinate Ocean
Model, and the Hallberg Isopycnal Model. A variation on the C-grid used
by the MIT model (Adcroft, Hill and Marshall 1999) is described below.

One approach to comparing grid arrangements is to compare the accuracy
of linear wave propagation as represented on those grids. For the case
of gravity waves modelled by the linearized shallow water equations for
a single-layer fluid, analyses of dispersion relations of numerical methods
indicate that the C-grid is more accurate than the B-grid for relatively well-
resolved waves, whereas the B-grid is more accurate in the case of relatively
coarser resolution (Arakawa and Lamb 1977, Dukowicz 1995). Here, the
resolution is defined in terms of the size of the grid spacing relative to the
Rossby radius c/f , where c is the speed of gravity waves and f is the Coriolis
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parameter, and it is assumed that the spatial discretizations are based on
second-order centred finite differences and averages that are natural for the
grid in question. Comparisons based on gravity waves thus suggest that the
C-grid is preferable for higher-resolution models and the B-grid is preferable
for coarser-resolution runs.

However, in a similar analysis of Rossby waves, Dukowicz (1995) con-
cluded that for Rossby waves the B-grid is more accurate at higher resolu-
tion. This is the opposite case to gravity waves. For coarser resolution the
B-grid is generally more accurate for Rossby waves, but this can depend
on the location in wavenumber space. Rossby waves play a fundamental
role in the development of large-scale circulation systems, whereas gravity
waves are primarily involved in the details of adjustments between states of
geostrophic balance (Gill 1982).

One practical problem with the B-grid is the possibility of a chessboard
pattern in the mass fields (see, e.g., Killworth et al. (1991).) On the B-
grid, a given velocity point has four neighbouring mass cells, and a natural
approximation to ∂M/∂x (equivalently, ∂p/∂x) can be obtained by a differ-
ence in x of an average with respect to y. However, if the mass field displays
a +1/–1 chessboard pattern then the computed pressure gradient is zero,
and, more generally, a +1/–1 pattern can be added to an arbitrary mass
field without affecting the computed pressure gradient. Grid noise of this
nature can be introduced into a solution by grid-scale forcing, such as the
forcing associated with variable bottom topography or variable coastlines.
Spatial smoothing can be used to suppress this B-grid computational mode.

With the C-grid a given velocity point has only two neighbouring mass
cells, and the above problem with the pressure gradient does not occur.
However, there is an analogous problem with the Coriolis terms. The ve-
locity components u and v are defined at different points, so some spatial
averaging is required to implement the terms −fv and fu in the u- and
v-equations, respectively. Chessboard patterns in the velocity fields do not
affect the computed values of those terms, and these patterns can persist
once they are stimulated by grid-scale forcing.

Adcroft et al. (1999) state that the C-grid noise primarily occurs in low-
resolution configurations, where again the resolution is defined in terms of
the size of the grid spacing relative to the Rossby radius. For low-resolution
simulations they obtain better results by implementing the Coriolis terms
with a hybrid of the C-grid and the D-grid. With the D-grid, the tangential

components of velocity are defined at the centres of the edges of mass cells;
that is, the values of u and v are defined at the points where v and u,
respectively, would be defined on the C-grid. In the method of Adcroft et al.

(1999), the u-equation on the C-grid uses the value of −fv from the D-grid.
Equations are also solved in the D-grid, and for the u-equation on the D-grid,
the value of −fv is taken from the C-grid. The introduction of additional
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equations and unknowns leads to the existence of nonphysical computational
modes, which in this case take the form of spatially independent inertial
oscillations. These modes are damped by using a weighted time average
when implementing the Coriolis terms.

An alternate approach is given by Nechaev and Yaremchuk (2004). At a
given u-point on the C-grid, consider implementing the Coriolis term −fv
by using the value of v at one of the neighbouring v-points; similarly, at
that v-point, implement the Coriolis term fu by referring to the u-point just
mentioned. This scheme, by itself, would give an uncentred implementation
of the Coriolis terms. Instead, Nechaev and Yaremchuk use all of the four
possible pairings of u-points and v-points and average the results. This pro-
cedure gives a centred approximation that avoids the C-grid noise described
above. In their analysis, these authors use the leapfrog time discretization,
except that the Coriolis terms are represented with a weighted time average
involving three consecutive time levels.

6.2. Alternative spatial discretizations: spherical geodesic grids, spectral

elements, and unstructured grids

One alternative to a quadrilateral grid is a spherical geodesic grid. The
construction of such a grid is described and illustrated, for example, by
Lipscomb and Ringler (2005). First, inscribe within the sphere a regular
icosahedron, which has 20 faces that are equilateral triangles. Subdivide
each triangle into four triangles by connecting the midpoints of the edges,
and then project each of the resulting vertices onto the sphere. Continue
this process, yielding finer and finer triangulations of the sphere at each
step. For any such triangulation, regard each vertex as the centre of a
grid cell; such a cell is defined by including all points on the sphere that
are closer to that vertex than to any other vertex. The resulting cells are
all hexagons, except that the cells corresponding to the 12 vertices of the
original icosahedron are pentagons. The resulting mesh of hexagons and
pentagons is nearly uniform, and it avoids the problems with coordinate
poles described in the preceding subsection.

Ringler and Randall (2002) developed numerical methods for solving the
shallow water equations on such a geodesic grid. In their formulation, scalar
quantities such as mass variables, divergence of velocity, and the vertical
component of the curl of velocity are defined at the centres of grid cells.
Velocity vectors are defined at the vertices of the grid cells, and the cell
averages of the divergence and curl are obtained by computing line integrals
around the boundaries of the grid cells. The pressure gradient at a given
vertex of a grid cell is obtained by linearly interpolating the pressure at the
centres of the three neighbouring cells and then computing the gradient of
the linear interpolant.
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Another type of spatial discretization is used in the Spectral Element
Ocean Model (Haidvogel and Beckmann 1999, Iskandarani, Haidvogel and
Levin 2003). This model employs a finite element discretization using high-
degree polynomials on hexahedral elements, which are cubes with curved
surfaces. Numerical convergence is obtained by refining the grid and/or
increasing the order of the approximating polynomials. The number of el-
ements in the vertical direction is independent of the horizontal position,
and the three-dimensional grid amounts to a stack of two-dimensional un-
structured grids. The elements are constructed so as to conform to bottom
topography and coastlines; given the structured nature of the grid in the
vertical direction, the discrete algorithm is essentially a terrain-following
σ-coordinate model.

The consideration of unstructured grids is a relatively recent development
in ocean modelling. The review of Pain et al. (2005) describes some recent
work involving three-dimensional unstructured grids, with an emphasis on
finite element methods. Issues discussed include adapting the grid reso-
lution to evolving flow conditions, parametrizing subgrid-scale processes in
the presence of variable resolution, maintaining hydrostatic and geostrophic
balance, advection schemes, iterative methods, and parallelization. This pa-
per is the lead article in a special issue of Ocean Modelling devoted entirely
to unstructured grids.

6.3. Advection

Among the processes represented in a numerical model of ocean circulation
is the advection of quantities such as density, layer thickness, and tracers.
The purpose of the present subsection is to describe some aspects of ad-
vection that are of particular interest in ocean modelling, namely, positive
definiteness and compatibility, and to describe briefly some of the advection
schemes that are used in this field. The literature on advection schemes is
vast, and there is no point in trying to summarize the field here; a compre-
hensive development of the subject is given, for example, in the recent text
by LeVeque (2002).

Section 7 of the present paper includes derivations of partial differential
equations that describe the conservation of mass of the fluid and the con-
servation of tracers. In those derivations it is assumed that the horizontal
coordinates are arbitrary curvilinear coordinates on a spheroid and that the
generalized vertical coordinate s can satisfy ṡ �= 0, where ṡ = Ds/Dt, so
that s can change with time following fluid parcels. For the sake of sim-
plicity in the present discussion, assume that ṡ = 0 and that the diffusion
of tracers is zero. Also assume that the horizontal coordinates are Carte-
sian coordinates on a tangent plane, and consider the portion of the fluid
bounded below and above by two coordinate surfaces s = s0 and s = s1,
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respectively. Under these assumptions, equation (7.38) for the conservation
of mass in such a coordinate layer is

∂

∂t
(∆p) +

∂

∂x
(u∆p) +

∂

∂y
(v∆p) =

∂

∂t
(∆p) + ∇ ·

(
u∆p) = 0, (6.1)

and equation (7.107) for the conservation of a tracer in that layer is

∂

∂t
(q∆p) + ∇ ·

(
u(q∆p)

)
= 0. (6.2)

Here, u(x, y, t) =
(
u(x, y, t), v(x, y, t)

)
is the mass-weighted vertical average

of the horizontal velocity in the layer; q(x, y, t) is the mass-weighted vertical
average of the tracer concentration, which is the quantity of tracer per unit
mass of fluid; and ∆p(x, y, t) is the vertical pressure difference across the
layer. In Section 7, overbars are used to indicate mass-weighted vertical
averages, but these are deleted in the present notation.

Because of the hydrostatic assumption, ∆p is the weight per unit hori-
zontal area in the layer, and it is thus g times the mass per unit horizontal
area when viewed from above. The quantity q∆p is then equal to g times
the quantity of tracer per unit horizontal area. In the case where s is the
geometrical height z, the hydrostatic condition ∂p/∂z = −ρg (see (7.8))
implies that ∆p is equal to g times the vertical integral of the density ρ in
the coordinate layer. In the case of an isopycnic model, the quantity ∆p
can be regarded as a measure of layer thickness.

The tracers used in a model of ocean circulation typically include poten-
tial temperature and salinity, and depending on the usage of the model they
may also include the concentrations of various chemical and/or biological
species. In a model of the dynamics of sea ice, Lipscomb and Hunke (2004)
transport 46 different scalar fields, including area fractions and thermody-
namic variables associated with each of five different ice thickness categories.
They also anticipate that the number of transported fields will increase as
ice models become more realistic.

Numerical advection schemes can be evaluated according to standard re-
quirements such as stability, accuracy, efficiency, and avoiding spurious os-
cillations. However, some additional requirements are of special interest in
the context of ocean modelling.

In the case of an isopycnic model, the layer thickness ∆p can tend to
zero, as indicated by Figure 2.1. When equation (6.1) is solved numerically,
it is then necessary to maintain nonnegative values of ∆p in the computed
solution; that is, solutions that are initially nonnegative must remain non-
negative in the absence of forcing. A numerical method with this property
can be labelled positive definite.

An example of a positive definite method is MPDATA, the Multidimen-
sional Positive Definite Advection Transport Algorithm (Smolarkiewicz and
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Margolin 1998). At each time step, this method employs multiple iterations.
The first iteration uses the standard upwind (donor-cell) method, for which
the mass flux at a cell edge is equal to the normal velocity at that edge
times the density (such as ∆p) in the upwind direction, i.e., in the cell that
is being drained. The upwind method is positive definite, assuming that a
Courant–Friedrichs–Lewy condition is satisfied. Subsequent iterations are
used to cancel the leading term in the truncation error, and these iterations
are written in the form of upwind steps with non-physical pseudovelocities.
The pseudovelocities are bounded by the physical velocities, so these sub-
sequent iterations are also positive definite. The upwind method, by itself,
is highly diffusive, and the subsequent iterations can be regarded as anti-
diffusive steps that cancel some of the numerical diffusion produced by the
initial upwind step.

Another desirable property of an advection scheme is the synchronous
transport of fluid and tracers. At a given time step, the mass equation (6.1)
is used to update ∆p, and the tracer equation (6.2) is used to update q∆p.
The tracer concentration q is then obtained as a ratio of the computed
q∆p and the computed ∆p. However, this ratio can display nonphysical
oscillations and extrema, even if the fields q∆p and ∆p are individually
well-behaved. This is especially a problem in cases where ∆p tends to zero.

This problem can be characterized as follows. The mass equation (6.1)
and the tracer equation (6.2) together imply

Dq

Dt
=

∂q

∂t
+ u · ∇q = 0. (6.3)

That is, the material derivative of q is zero, so q is constant along particle
paths. The value of q(x, y, t + ∆t) is therefore bounded by values of q in a
neighbourhood of (x, y) at time t. It is desirable that a numerical method
produce solutions having an analogous property, namely, that the computed
value of q at position (xi, yj) at time tn+1 be bounded by the values of q at
time tn at position (xi, yj) and the immediately adjacent grid points. Schär
and Smolarkiewicz (1996) use the term ‘compatible’ to refer to a numerical
method with this property, and they demonstrate that compabibility can
be obtained through a suitable limiting of antidiffusive correction fluxes.

An alternate approach to compatibility, and to advection in general, is
given by the method of incremental remapping developed by Dukowicz and
Baumgardner (2000). This method was subsequently extended to the mod-
elling of sea ice transport by Lipscomb and Hunke (2004). Lipscomb and
Ringler (2005) developed a version of incremental remapping for use with
geodesic grids, in contrast to the rectangular grids discussed by Dukowicz
and Baumgardner.

With the method of incremental remapping, each fixed grid cell is re-
garded as an ‘arrival cell’ for the location of a portion of mass at time tn+1.
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The values of the velocity at the corners of that cell are used to trace the
cell backward in time to yield an approximate ‘departure cell’ for the loca-
tion of that mass at time tn. The solution at time tn is regarded as linear
in each cell. In general, a departure cell contains portions of several of the
fixed cells, and the contributions from these various portions are summed to
yield the total mass in the departure cell at time tn. This mass is then the
mass in the arrival cell at time tn+1. The cell masses at time tn+1 yield cell
averages that are used to construct linear approximations in preparation for
the next step.

This process resembles the ‘reconstruct-evolve-average’ (REA) approach
to deriving advection schemes, in which piecewise fields are reconstructed
from cell averages, propagated forward in time, and then averaged to yield
new cell averages (LeVeque 2002). One difference between incremental
remapping and the REA approach is that the former traces cells backward
in time, not forward.

In the linear approximations used by Dukowicz and Baumgardner (2000),
the slopes are determined by centred differences of the values of the solution
in the adjacent cells. However, when necessary, these slopes are limited to
ensure that the method is monotone, i.e., that the solution at all spatial
positions at a fixed time is a monotone increasing function of the solution
at all positions at the preceding time level. This condition implies that the
method is positive definite. The method of incremental remapping is second-
order accurate in space, except at locations where the limiting is applied.

If this method is applied to a pair of equations of the form (6.1) and (6.2),
then the computed tracer concentration q in a given cell at time tn+1 is a
weighted average of the values of q at time tn in that cell and in neighbouring
cells, and compatibility is therefore ensured. In addition, the method is also
conservative; by construction, the total mass at time tn+1 is the sum of
the masses in the departure cells at time tn, and this is the total mass at
time tn.

With the method of incremental remapping, substantial computational
cost is incurred when constructing the departure regions. However, if mul-
tiple quantities are transported with the same velocity field, then the geo-
metrical constructions need to be performed only once per time step, as the
same results are used for all of the transported quantities. This method is
therefore well-suited for models that transport large numbers of tracers. In
contrast, the pseudovelocities used in MPDATA are different for each trans-
ported quantity, so the marginal cost of introducing an additional tracer is
greater with MPDATA than in the case of incremental remapping (Lipscomb
and Hunke 2004).

The mass and tracer equations (6.1) and (6.2) are equivalent to stat-
ing that the masses of the fluid and tracers are conserved in Lagrangian
volumes, i.e., in volumes that move with the fluid; this principle is used in
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Section 7 to derive equations (7.38) and (7.107), of which (6.1) and (6.2)
are special cases. The method of incremental remapping is a discrete, finite-
volume, representation of this Lagrangian principle. This method is related
to the class of semi-Lagrangian methods, for which grid points are traced
backward from time tn+1 to departure points at time tn. Values of the
solution at departure points are obtained via interpolation from grid point
values, and time differences represent approximations to material deriva-
tives along particle paths. These methods are reviewed, for example, in
the text by Durran (1999). In general, semi-Lagrangian methods do not
conserve mass exactly. However, a conservative method by Lin and Rood
(1996) has a semi-Lagrangian flavour, and it involves directional splitting
and a composition of one-dimensional advection schemes that are essentially
one-dimensional versions of the method of incremental remapping.

The preceding discussion of advection is not all-inclusive. For example,
the review by Griffies et al. (2000a) includes a list of some advection schemes
that were used in operational ocean models as of the date of that review.
These include flux-corrected transport (Zalesak 1979), three different varia-
tions on the Quick scheme of Leonard (1979), an advection scheme of Easter
(1993), various centred schemes, and MPDATA.

In addition, Griffies et al. (2005) describe a third-order upwind biased
method, with flux limiting, that has been implemented in the Modular
Ocean Model and in the MIT general circulation model. Iskandarani, Levin,
Choi and Haidvogel (2005) compare four advection schemes for high-order
finite element and finite volume methods, including the discontinuous Gal-
erkin method and a spectral finite volume method with flux limiting. Hecht
(2006) reviews several advection methods for ocean modelling, especially
in the context of forward-in-time discretizations which involve only two
time levels.

6.4. Solution of the momentum equations

We next give an overview of some different approaches that are taken to
solving the momentum equations. In this subsection the horizontal coordi-
nates are assumed to be Cartesian coordinates on a tangent plane, for the
sake of notational simplicity.

Section 7 includes a derivation of partial differential equations that de-
scribe the conservation of momentum for a fluid that is in motion relative
to a rotating spheroid. In the case of Cartesian coordinates, the momentum
equations (7.92) can be written in the form

∂

∂t
(ups) +

∂

∂x

(
u(ups)

)
+

∂

∂y

(
v(ups)

)
+

∂

∂s

(
ṡ(ups)

)
− fvps = Fu,

∂

∂t
(vps) +

∂

∂x

(
u(vps)

)
+

∂

∂y

(
v(vps)

)
+

∂

∂s

(
ṡ(vps)

)
+ fups = Fv.

(6.4)
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Here, s is a generalized vertical coordinate, f is the Coriolis parameter, and
Fu and Fv represent forcing due to pressure and viscosity.

A vertically discrete model can be obtained by partitioning the fluid do-
main into layers, each of which is bounded above and below by surfaces of
constant s. The conservation of momentum in a coordinate layer bounded
by the surfaces s = s0 and s = s1 is described by equations (7.101) and
(7.104). In the case of Cartesian coordinates, the u-equation (7.101) can be
written in the form

∂

∂t
(ū∆p) +

∂

∂x

(
ū(ū∆p)

)
+

∂

∂y

(
v̄(ū∆p)

)

+
[(

ṡpsu
)
s=s0

−
(
ṡpsu

)
s=s1

]
− fv̄∆p = F̄u,

(6.5)

and the v-equation (7.104) can be expressed similarly. The horizontal veloc-
ity components ū(x, y, t) and v̄(x, y, t) are mass-weighted vertical averages
within the layer. The quantities ū∆p and v̄∆p are the components of mo-
mentum per unit horizontal area, times g, and so they will be regarded as
components of momentum density. The second and third terms in (6.5) rep-
resent the lateral advection of momentum, and the terms in square brackets
represent the transport of momentum between layers due to the movement
of coordinate surfaces relative to the fluid. As noted in Section 7.8, the
quantity −ṡps is the rate of flow of mass per unit horizontal area (times g)
across a coordinate surface due to material changes in s. In the case of a hy-
drostatic z-coordinate model, −ṡps = −żpz = ρgw, where w is the vertical
component of velocity. In the case of a hybrid coordinate model, the rate of
mass flow depends on the actions of the grid generator that establishes and
moves the coordinate surfaces (Bleck 2002). With an isopycnic model, the
flow across coordinate surfaces is due to the diapycnal diffusion of heat and
salt, which causes the surfaces to move relative to the fluid; the modelling of
this transport is discussed, for example, by McDougall and Dewar (1998),
Hallberg (2000), and de Szoeke and Springer (2003).

One approach to solving the momentum equations is to use an advection
scheme to implement the advective terms in the layer u-equation (6.5) and
in the analogous v-equation. The Coriolis terms and the effects of pressure
and viscosity can be regarded as forcing terms that are implemented with
standard differencing and/or averaging. This approach was used by Smo-
larkiewicz and Margolin (1998) in the context of the shallow water equations
for a single layer. In their formulation, the forcing is implemented with a
Strang splitting; starting with the computed solution at time tn, add half
the forcing at time tn (times ∆t), apply an advection scheme to the result,
and then add half the forcing at time tn+1 (times ∆t).

A different strategy for the momentum equations is used in the Bryan–
Cox class of z-coordinate models. The initial model in this class is described
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by Bryan (1969). In that reference it is assumed that the Boussinesq ap-
proximation applies, i.e., that the density is constant in the momentum
equations except in the buoyancy term in the vertical component. In that
case ps = pz = −ρg ≈ −ρ0g, and the u-equation in (6.4) has the form

∂u

∂t
+

∂

∂x
(uu) +

∂

∂y
(vu) +

∂

∂z
(wu) − fv = −Fu/(ρ0g). (6.6)

In this equation the nonlinear terms on the left side represent an advec-
tion of the quantity u with advective velocity (u, v, w). To discretize these
terms, consider grid cells centred at velocity points on the B-grid, and use
spatial averages to obtain the necessary fluxes along the faces of those cells.
The choice of discretization is guided by a desire to maintain energetic con-
sistency in the model, namely, that the discrete nonlinear terms have no
effect on the total kinetic energy in the solution and that the exchanges be-
tween kinetic and potential energy are represented correctly. These choices
constrain the fluxes at cell faces to be calculated in terms of centred second-
order averages.

In their description of the current version of the Modular Ocean Model,
a direct descendant of the original Bryan–Cox model, Griffies et al. (2004)
cite additional aspects of energetic consistency. One example is that the
work done by the fluid against the pressure gradient can be converted into
compressibility effects and/or work against gravity. The Modular Ocean
Model no longer uses the Boussinesq approximation; one reason is that
this approximation causes a model to preserve volume, which precludes the
accurate modelling of sea-level rise due to thermal expansion. In order to
employ the approach outlined above, Griffies et al. (2004) use a substitution
ρ0ũ = ρu to convert the momentum equation into a form similar to (6.6).
They give a detailed discussion of the averaging that they use to compute
the necessary fluxes.

A third approach to solving the momentum equations is to convert the
dependent variables to velocity and write the horizontal transport terms
in terms of kinetic energy and vorticity. In the present case of Cartesian
coordinates, the mass equation (7.32) is

∂

∂t

(
ps

)
+

∂

∂x

(
ups

)
+

∂

∂y

(
vps

)
+

∂

∂s

(
ṡps

)
= 0;

when this equation is combined with the u-momentum equation in (6.4),
the result is

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ ṡ

∂u

∂s
− fv = Fu/ps,

or
∂u

∂t
+

∂

∂x

[
1

2

(
u2 + v2

)]
− (ζ + f)v + ṡps

∂u

∂p
= Fu/ps. (6.7)



Numerical modelling of ocean circulation 427

The last equation is obtained by writing uux + vuy in terms of the relative
vorticity ζ = vx − uy and the kinetic energy per unit mass, 1

2(u2 + v2).
The same procedure was used in Section 4.4 in preparation for proving the
conservation of potential vorticity for the shallow water equations. As noted
in that section, ζ+f is the local vertical component of the absolute (relative
plus planetary) vorticity.

The kinetic energy and vorticity terms can be approximated with centred
finite differences; if the C-grid is used, some spatial averaging is also re-
quired. In the case of a vertically discrete layered model, the vorticity term
can be written as

(ζ + f)v =

(
ζ + f

∆p

)
(v∆p). (6.8)

The first factor on the right side of (6.8) is proportional to the potential
vorticity in a coordinate layer, and the second factor is proportional to
mass flux. Sadourny (1975) describes two methods for implementing (6.8)
on a C-grid, each of which uses various kinds of spatial averages to com-
pute the potential vorticity and mass flux. With one such discretization,
the total energy is conserved when applied to the shallow water equations
with exact integration in time. The other discretization yields the con-
servation of potential enstrophy in the same context; in the case of the
shallow water equations, the potential enstrophy is the spatial integral of
1
2(ζ + f)2/h. The conservation of this quantity is of interest because it
inhibits the accumulation of energy at grid scales and thus promotes nu-
merical stability. The potential-enstrophy-conserving method is used, for
example, in the Miami Isopycnic Coordinate Ocean Model (Bleck 2002),
whereas the energy-conserving method is used in the Hallberg Isopycnal
Model (Hallberg 1997). Because of the particular nature of the spatial
averaging used in the potential-enstrophy-conserving method, special pro-
cedures must be used in situations where ∆p tends to zero. However, no
special procedures are needed for the energy-conserving method.

Adcroft et al. (2004) use the formulation (6.7) when solving the momen-
tum equations on the conformally expanded spherical cube (see Section 6.1).
In their setting the vorticity is computed by a finite volume approach; a vor-
ticity point is regarded as the centre of a grid cell, and the circulation around
the boundary of that cell, divided by area, gives the vorticity. This formu-
lation avoids problems associated with the singular points corresponding to
the corners of the cube.

7. Governing equations in general coordinates

We now address the derivation of the governing equations that are to be
solved numerically. In particular, the goal of the present section is to de-
rive partial differential equations that describe the conservation of mass,
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momentum, and tracers for a hydrostatic and stratified fluid in a rotating
reference frame. In this derivation the vertical coordinate is a generalized
coordinate that includes all of the cases described in Section 3, and the
horizontal coordinates are arbitrary orthogonal coordinates on a spheroid.
Some aspects of the following discussion are also contained in various ref-
erences, such as Bleck (2002), Gill (1982), Griffies (2004), Holton (1992),
Miller (2006), and Pedlosky (1987).

7.1. Definition of level surfaces

The Earth’s surface is not exactly a sphere, but instead can be described
more accurately as an oblate spheroid (Gill 1982). In particular, the surface
of constant gravitational potential at sea level is approximated by a spheroid
with a polar radius approximately equal to 6357 km and an equatorial radius
of approximately 6378 km. The maximum deviation from the spheroid of
best fit is on the order of 100 metres.

In the following, we consider fluid motion relative to a spheroid that
rotates with uniform angular velocity Ω. Assume that the axis of rotation
is stationary in a rectangular coordinate system that serves as an inertial
reference frame. As a first approximation, one can define directions tangent
to the spheroid as horizontal, and directions normal to the spheroid as
vertical. However, for later use it will be useful to incorporate the effects of
centripetal acceleration into such a definition.

Suppose that a layer of fluid is stationary relative to the rotating spheroid,
and assume that the only forces acting on the fluid are due to gravity and
pressure. For a given fluid parcel and a given time, let ap denote the net
acceleration (force per unit mass) due to pressure forcing, and denote the
acceleration due to gravity by ag = −∇φ. Here, φ is the gravitational po-
tential, ∇ is the three-dimensional spatial gradient, and all quantities are
viewed in the inertial frame. Since the parcel rotates with uniform angu-
lar velocity Ω, the resultant force per unit mass must be the centripetal
acceleration that is required to maintain the rotation. The centripetal ac-
celeration is directed toward the axis of rotation and has magnitude Ω2r⊥,
where r⊥ denotes the distance from the parcel to the axis. This accelera-
tion can also be written in terms of a potential function as −∇φc, where
φc = 1

2Ω2r2
⊥

(Pedlosky 1987). It then follows that the centripetal accelera-
tion is −∇φc = ap + ag = ap −∇φ: see Figure 7.1.

With the Earth’s rotation rate of approximately 2π + 2π/360.24 radians
in 24 hours (Griffies 2004), the centripetal acceleration at radius 6300 km
has a magnitude of approximately 0.03 m/sec2. In contrast, the acceleration
due to gravity is approximately 9.8 m/sec2. It is thus a slight imbalance
between gravitational and pressure forces that provides the necessary cen-
tripetal force.
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Figure 7.1. Combined effect of gravitational and pressure
accelerations. The vertical line segment is the axis of
rotation. The dashed ellipse is a cross-section of a spheroid
of constant gravitational potential φ; the gravitational
acceleration ag = −∇φ is orthogonal to this spheroid. The
solid ellipse is a cross-section of the spheroid of constant
gravitational–centripetal potential Φ = φ − φc that
intersects the first spheroid at the indicated point. The
pressure acceleration ap for a relatively stationary fluid is
orthogonal to the surface of constant Φ. The dashed arrow
is a translation of ap, and the sum ag + ap = −∇φ + ap is
the centripetal acceleration that is required to maintain the
rotation. Locally horizontal and vertical directions are
defined relative to surfaces of constant Φ.

The effects of the gravitational and centripetal potentials can be combined
into a potential function Φ = φ − φc = φ − 1

2Ω2r2
⊥
. Surfaces of constant Φ

are also spheroids, and they bulge out slightly near the equator, compared
to surfaces of constant φ. For a layer of fluid that is stationary relative
to the rotating spheroid, ap − ∇Φ = 0, and ap is then orthogonal to the
surfaces of constant Φ.

In the following discussions, directions that are tangent to surfaces of
constant Φ will be regarded as ‘level’, or locally ‘horizontal’, and directions
normal to such surfaces will be regarded as locally ‘vertical’.

In the case of a fluid that is relatively stationary, the pressure acceleration
ap points vertically, and it exactly cancels the effect of the gravitational–
centripetal potential Φ. More generally, for a moving fluid we will impose
the ‘hydrostatic assumption’ that the vertical component of the pressure
acceleration equals ∇Φ. The justification for this assumption follows from
the scaling of large-scale flows that is discussed in Section 2.1.

Assume that ap is proportional to the pressure gradient ∇p. For a rel-
atively stationary fluid, ap is parallel to ∇Φ, and the surfaces of constant
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pressure coincide with the surfaces of constant Φ. As noted above, the latter
surfaces bulge out slightly near the equator, relative to the rotating spheroid.
This bulging of the pressure surfaces provides the centripetal acceleration
that enables the fluid to rotate with the spheroid without assistance from
any forcing other than gravity and hydrostatic pressure.

The magnitude of the gravitational acceleration is nearly constant over
the entire fluid domain. At latitude 45◦, this magnitude is approximately
9.806 m/sec2, whereas the area average over the entire Earth is approxi-
mately 9.7976 m/sec2 (Griffies 2004). In the following, it will be assumed
that |∇Φ| = g, where g is a constant.

7.2. Horizontal and vertical coordinates

Let Σ denote a surface of constant gravitational–centripetal potential Φ,
such as at mean sea level. As before, assume that Σ rotates with uniform
angular velocity Ω about an axis that is fixed in an inertial reference frame.
Parametrize all or part of Σ with coordinates x = (x1, x2), and let z denote
a distance perpendicular to Σ, with z increasing outward and z = 0 corre-
sponding to points on Σ. The coordinate z has units of length, but x1 and
x2 do not necessarily have those units.

The coordinates (x, z) = (x1, x2, z) define the position of a point relative
to the rotating surface Σ. For any such point and any time t, let r(x, z, t)
denote the position of that point relative to the inertial reference frame at
time t. That is, r(x, z, t) is a vector of three numbers, with units of length,
that gives the position of the point relative to the rectangular coordinate
system in which the axis of rotation is stationary. The effects of rotation
can be expressed as

r(x, z, t) = Q(Ωt) r(x, z, 0), (7.1)

where Q(Ωt) is an orthogonal matrix that represents a rotation through
angle Ωt about the given axis. In (7.1), r(x, z, t) and r(x, z, 0) are regarded
as column vectors.

Define the metric coefficients m1 and m2 by

mi(x, z) =

∣∣∣∣
∂r

∂xi
(x, z, t)

∣∣∣∣, i = 1, 2. (7.2)

Here, the Euclidean vector norm is used. A comparison with (7.1) shows
that the right side of (7.2) is independent of t, so the notation on the left
side indicates no dependence on t. Equation (7.2) implies that an increment
∆xi in the parameter xi corresponds to a horizontal spatial displacement
approximately equal to mi∆xi. In the case of an ocean model the metric
coefficient mi is nearly independent of z, as the ocean is a few kilometres
deep, whereas the Earth has a radius of over 6300 km.
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Next define the unit vectors i and j by

i(x, t) =
1

m1(x, 0)

∂r

∂x1
(x, 0, t),

j(x, t) =
1

m2(x, 0)

∂r

∂x2
(x, 0, t).

(7.3)

The partial derivatives in (7.3) are taken for fixed z = 0, so the vectors i and
j are tangent to the surface Σ and thus locally horizontal. These vectors can
be regarded as unit vectors pointing in the x1- and x2-directions, respec-
tively, that are attached to Σ and rotate with Σ. Throughout the following
discussion, the horizontal coordinate system is assumed to be orthogonal,
in the sense that i and j are everywhere orthogonal. The unit vector in the
upward vertical direction is

k(x, t) =
∂r

∂z
(x, z, t). (7.4)

Since the distance z is taken orthogonal to the surface Σ, the vectors i,
j, and k are mutually orthogonal. In Sections 7.12 and 7.15 it is assumed
that Σ is parametrized so that the coordinate system is right-handed, in the
sense that i × j = k, k × j = −i, and i × k = −j; however, this assumption
is not used elsewhere.

In later discussions we use the approximations

∂r

∂x1
(x, z, t) = m1(x, z) i(x, t),

∂r

∂x2
(x, z, t) = m2(x, z) j(x, t),

(7.5)

which are exact when z = 0. In effect, these approximations assume that
the tangent vectors to surfaces of constant z are parallel.

For an example of a coordinate system, assume that Σ is a sphere of
radius a centred at the origin in the inertial frame. Also assume that the
axis of rotation aligns with the third coordinate axis in that reference frame
and that the rotation is anticlockwise when the sphere is viewed from the
positive portion of that axis. Use spherical coordinates, with longitude
x1 = λ and latitude x2 = θ, and assume that at time t = 0 the points with
λ = 0 align with the first coordinate in the inertial frame. Then

r(x, z, t) = r(λ, θ, z, t) =
(
r cos θ cos(λ + Ωt), r cos θ sin(λ + Ωt), r sin θ

)
,

(7.6)
with r = a + z ≈ a. In this case the unit vectors i and j point eastward and
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northward, respectively; the metric coefficients are

mλ =

∣∣∣∣
∂r

∂λ

∣∣∣∣ = (a + z) cos θ ≈ a cos θ,

mθ =

∣∣∣∣
∂r

∂θ

∣∣∣∣ = a + z ≈ a;

(7.7)

and the relations (7.5) are exact.
Gill (1982) points out that the horizontal spheroidal coordinates for the

Earth can be approximated accurately in terms of spherical coordinates.
However, as noted in Section 6, for a numerical model of the global ocean
circulation it is inadvisable to use spherical (or spheroidal) coordinates,
because of the convergence of grid lines at the North Pole.

7.3. Generalized vertical coordinate

Here we develop a generalized vertical coordinate s for a hydrostatic, strat-
ified fluid lying in a basin that rotates along with the equipotential surface
Σ described in the preceding section. Possible choices for s include the
level coordinate z, an isopycnic coordinate using the reciprocal of potential
density (or a related quantity), the terrain-following coordinate σ, or some
hybrid of the preceding.

Assume that, for fixed time t and horizontal coordinates x = (x1, x2), a
quantity s is an increasing function of z. Equivalently, z is an increasing
function of s. A surface of constant s can move upward and downward
with time, and for fixed time the elevation of that surface can vary with
horizontal position. For each x and t, let z(x, s, t) denote the elevation of
such a surface.

The derivative ∂z/∂s relates increments in the parameter s to increments
in space, and it can therefore serve as a metric coefficient for the vertical
direction. For later use, it will be useful to relate this quantity to pressure
and density.

Let P (x, z, t) denote the pressure in the fluid corresponding to horizontal
position x, elevation z, and time t. The hydrostatic assumption of Sec-
tion 7.1 implies

∂P

∂z
= −ρg, (7.8)

where ρ is the density of the fluid. In particular, the net vertical component
of the pressure force acting on an element of fluid having horizontal area
∆A and height ∆z is approximately −∂P

∂z
∆z∆A = −1

ρ
∂P
∂z

(ρ∆z∆A), so the

pressure force per unit mass is approximately −1
ρ

∂P
∂z

. According to the

hydrostatic assumption, this quantity equals |∇Φ|, which was assumed to
equal a constant value g at the end of Section 7.1.
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Now let p(x, s, t) denote the pressure in terms of s, so that p(x, s, t) =
P (x, z(x, s, t), t). Then

∂p

∂s
(x, s, t) =

∂P

∂z
(x, z(x, s, t), t)

∂z

∂s
(x, s, t)

=
−g

α(x, s, t)

∂z

∂s
(x, s, t).

(7.9)

Here, α(x, s, t) = 1/ρ(x, s, t) denotes the specific volume (volume per unit
mass). A metric coefficient for the coordinate s is then defined by

ms(x, s, t) = zs(x, s, t) = −α(x, s, t)ps(x, s, t)

g
. (7.10)

The subscripts on z and p denote partial derivatives. The coefficient ms is
positive, since ∂p/∂s < 0.

An increment ∆s in s corresponds to a vertical distance approximately
equal to ms∆s, in analogy to the horizontal displacement mi∆xi corre-
sponding to an increment ∆xi in the horizontal parameter xi. Note that
the lateral displacements are not measured along surfaces of constant s,
but instead are measured in terms of projections onto the horizontal. This
formulation is also used, for example, by Bleck (1978, 2002).

7.4. Integration in parameter space

The partial differential equations for conservation of mass and momentum
will be derived so that the independent spatial variables are the parameters
(x, s) = (x1, x2, s). However, quantities such as mass per unit volume and
momentum per unit volume are naturally expressed in terms of rectangular
coordinates having units of length. In the following, the term ‘parameter
space’ refers to the coordinates (x, s) attached to the rotating spheroid Σ,
and the term ‘rectangular coordinates’ refers to the rectangular coordinate
system in which the axis of rotation is stationary. The inertial nature of
this frame is immaterial to the formulation of conservation of mass, but it
is essential to the formulation of conservation of momentum. The purpose
of the present subsection is to develop the necessary change of variables
between integrals in these two coordinate systems.

Let A(t) be a region in parameter space, and let B(t) denote the cor-
responding region in the rectangular coordinate system in the inertial ref-
erence frame at time t. (A(t) and B(t) provide different mathematical de-
scriptions of the same physical entity, and in the following they are regarded
as different mathematical objects. The dependence on t is immaterial to
the present subsection, but it is included in the notation for the sake of
further developments.) The coordinate mapping from A(t) to B(t) can be
represented as

r̃(x, s, t) = r
(
x, z(x, s, t), t

)
(7.11)
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for all (x, s) ∈ A(t). Let ψ̃(·, t) denote an integrable function defined
on B(t), and let ψ(·, t) be the corresponding function on A(t) defined by
ψ(x, s, t) = ψ̃

(
r̃(x, s, t), t

)
. Then

∫

B(t)
ψ̃(·, t) dVB(t) =

∫

A(t)
ψ̃

(
r̃(x, s, t), t

)
J(x, s, t) dx1 dx2 ds

=

∫

A(t)
ψ(x, s, t) J(x, s, t) dx ds,

(7.12)

where dVB(t) denotes integration on B(t), and J(x, s, t) is the absolute value
of the Jacobian,

J(x, s, t) =

∣∣∣∣det

[
∂r̃

∂x1
(x, s, t),

∂r̃

∂x2
(x, s, t),

∂r̃

∂s
(x, s, t)

]∣∣∣∣. (7.13)

Here, r̃ is interpreted as a column vector, and the quantity in square brackets
is a 3 × 3 matrix. Insert the definition (7.11) of r̃ into (7.13) to obtain

J(x, s, t) =

∣∣∣∣det

[
∂r

∂x1
+

∂r

∂z

∂z

∂x1
,

∂r

∂x2
+

∂r

∂z

∂z

∂x2
,

∂r

∂z

∂z

∂s

]∣∣∣∣ (7.14)

=

∣∣∣∣det

[
∂r

∂x1
,

∂r

∂x2
,

∂r

∂z

∂z

∂s

]∣∣∣∣ (7.15)

= m1m2ms

∣∣ det
[
i(x, t), j(x, t),k(x, t)

]∣∣. (7.16)

In (7.14)–(7.15), the partial derivatives of r are evaluated at
(
x, z(x, s, t), t

)
,

and the partial derivatives of z are evaluated at (x, s, t). The representation
(7.15) arises from expanding the sums in (7.14) and using the fact that a
determinant is zero if one column is a multiple of another. The representa-
tion (7.16) relies on the relations (7.5); the metric coefficients m1 and m2

are evaluated at
(
x, z(x, s, t)

)
; and ms is evaluated at (x, s, t). The unit

vectors i, j, and k are mutually orthogonal, so the determinant in (7.16)
has absolute value equal to 1. It then follows that

J(x, s, t) = m1

(
x, z(x, s, t)

)
m2

(
x, z(x, s, t)

)
ms(x, s, t) (7.17)

and thus∫

B(t)
ψ̃(·, t) dVB(t) =

∫

A(t)
ψ(x, s, t) m1m2ms dx1 dx2 ds. (7.18)

For an interpretation of the preceding, consider a rectangular solid having
sides ∆x1, ∆x2, ∆s in the region A(t) in parameter space. The correspond-
ing subset of B(t) is approximately a parallelepiped generated by the vectors

∂r̃

∂x1
∆x1,

∂r̃

∂x2
∆x2,

∂r̃

∂s
∆s.

The first two of these vectors are tangent to a surface of constant s, and
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the expressions in (7.14) amount to resolving these vectors into horizontal
and vertical components. The subsequent expressions (7.15)–(7.16) give the
volume of a rectangular solid having the same volume as the parallelepiped.
The appropriate volume element is then m1m2ms dx1 dx2 ds.

7.5. Integration on a material volume

Now consider integration on a time-dependent region that moves with a fluid
flow. In particular, suppose that a volume of fluid occupies a region A(t)
in parameter space at time t, and let B(t) denote the corresponding region
in rectangular coordinates in the inertial reference frame. Assume that a
function ψ̃(·, t) is defined and integrable on B(t) for each t, and let ψ(·, t)
be the corresponding function on A(t) defined by ψ(x, s, t) = ψ̃

(
r̃(x, s, t), t

)

for all (x, s) ∈ A(t).
In the following usage, ψ̃ represents a fluid property such as mass density

or a component of momentum density, and an integral on B(t) is used when
representing a conservation principle for that mass of fluid. In particular,
it will be necessary to compute a time derivative of such an integral, and
for that purpose it is useful to relate an integral on B(t) to an integral on
a fixed region in parameter space at time t = 0.

Let (X, S) ∈ A(0) denote the position of a fluid parcel in parameter space
at time 0, and denote the position of that parcel in parameter space at any
time t by

(
x(X, S, t), s(X, S, t)

)
. That is, X and S are Lagrangian variables,

and x and s are Eulerian variables. Then∫

B(t)
ψ̃(·, t) dVB(t) =

∫

A(t)
ψ(x, s, t) J(x, s, t) dx ds

=

∫

A(0)
ψ(x, s, t) J(x, s, t) H(X, S, t) dX ds.

(7.19)

Here, x and s are functions of (X, S, t), and H(X, S, t) is the Jacobian of
the transformation from (X, S) to (x, s), i.e.,

H(X, S, t) =




∂x1

∂X1

∂x1

∂X2

∂x1

∂S

∂x2

∂X1

∂x2

∂X2

∂x2

∂S

∂s
∂X1

∂s
∂X2

∂s
∂S


. (7.20)

The last integral in (7.19) uses H instead of |H|, as H(X, S, t) > 0 for
all (X, S, t). This can be demonstrated as follows. Impose the physically
realistic assumption that this Jacobian is everywhere nonzero for all t, so
that positive volumes are mapped to positive volumes, and also assume that
the flow is smooth enough that H is a continuous function. At time t = 0
the mapping (X, S) 	→ (x, s) is the identity mapping. In that case H is
the determinant of the identity matrix, so H(X, S, 0) = 1 for all (X, S).
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If H(X, S, t) < 0 for some (X, S, t), then continuity in time implies that
H(X, S, t0) = 0 for some t0, which is a contradiction.

7.6. Time derivative of a material integral

Next consider the time derivative of the integral (7.19) over a material
volume. For that purpose, it will be useful to define the following quantities.

For any point (x, s) ∈ A(t), let ẋ(x, s, t) and ṡ(x, s, t) denote the time
derivatives of x and s, respectively, as seen by the fluid parcel that is located
at position (x, s) in parameter space at time t. More precisely,

∂x

∂t
(X, S, t) = ẋ

(
x(X, S, t), s(X, S, t), t

)
,

∂s

∂t
(X, S, t) = ṡ

(
x(X, S, t), s(X, S, t), t

) (7.21)

for all (X, S) ∈ A(0) and all t.
In general, the quantities ẋ1, ẋ2, and ṡ are not components of linear

velocity. For example, if spherical coordinates are used for the horizontal
parameters, then ẋ1 = λ̇ and ẋ2 = θ̇ represent the time derivatives of
longitude and latitude, respectively, as seen by an observer moving with the
fluid. Corresponding components of linear velocity are obtained by using
the appropriate metric coefficients, as described in Section 7.9. In addition,
the values of ṡ need not be related to any geometrical motion at all; for
example, if s is the reciprocal of potential density, then nonzero values of ṡ
could result entirely from a warming or cooling of the fluid.

Now define a material derivative of a quantity in terms of the coordinates
used here. Assume that F (x, s, t) is defined for all (x, s) ∈ A(t), and let

F̂ (X, S, t) = F
(
x(X, S, t), s(X, S, t), t

)
for all (X, S) ∈ A(0). Then

∂F̂

∂t
(X, S, t) =

∂F

∂t
+

∂x

∂t
(X, S, t) · ∇F +

∂s

∂t
(X, S, t)

∂F

∂s

=
∂F

∂t
+ ẋ · ∇F + ṡ

∂F

∂s
.

(7.22)

Here, ∇F (x, s, t) =
(

∂F
∂x1

, ∂F
∂x2

)
for all (x, s) ∈ A(t) and all t. The notation

∇ denotes the gradient with respect to (x1, x2) for fixed s; the notation ∇s

is also used in this context, but a subscript s is unnecessary here, given the
definition of F . In (7.22), ẋ, ṡ, and all derivatives of F are evaluated at(
x(X, S, t), s(X, S, t), t

)
. Now define the material derivative

DF

Dt
(x, s, t) =

∂F

∂t
+ ẋ · ∇F + ṡFs (7.23)

for all (x, s) ∈ A(t) and all t, where all quantities on the right side are
evaluated at (x, s, t), and Fs = ∂F/∂s. The quantity DF/Dt is the time
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derivative of F following fluid parcels, as opposed to the partial derivative
∂F/∂t for fixed position, and DF/Dt(x, s, t) refers to the parcel that is
located at position (x, s) at time t.

The time derivative of the integral (7.19) includes the time derivative of
the Jacobian H in (7.20). The calculation of this integral is an analogue of
the calculation done for standard Cartesian coordinates (e.g., Chorin and
Marsden (1990)), and it will not be given here. Instead, we simply state the
result, which is

∂H

∂t
(X, S, t) =

(
∂ẋ1

∂x1
+

∂ẋ2

∂x2
+

∂ṡ

∂s

)
H(X, S, t). (7.24)

Each of the terms in the parentheses is evaluated at
(
x(X, S, t), s(X, S, t), t

)
.

The result (7.24) can be interpreted as follows. The Jacobian H repre-
sents the ‘volume’ of a fluid parcel in parameter space at time t, relative
to its volume at time 0. If ∂ẋ1/∂x1 > 0 then the rate of fluid flow in the
x1-direction increases with x1, so the fluid expands in that direction. The
quantity in parentheses in (7.24) represents the net effect of such quanti-
ties over the three coordinate directions, and it is a generalization of the
usual divergence of velocity. If the generalized divergence is positive, then
∂H/∂t > 0, and the fluid parcel expands as t increases, as expected.

Now let E(t) denote the time-dependent integral (7.19), and compute
E′(t). The quantities ψ and J in (7.19) are evaluated at the point

(
x(X, S, t),

s(X, S, t), t
)
, so the time derivative of Jψ in (7.19) is the material derivative.

Then

E′(t) =

∫

A(0)

[
D(Jψ)

Dt
+ Jψ

(
∂ẋ1

∂x1
+

∂ẋ2

∂x2
+

∂ṡ

∂s

)]
H(X, S, t) dX dS

=

∫

A(t)

[
D(Jψ)

Dt
+ Jψ

(
∂ẋ1

∂x1
+

∂ẋ2

∂x2
+

∂ṡ

∂s

)]
dx ds.

(7.25)

In the first integral, the terms in the square brackets are evaluated at(
x(X, S, t), s(X, S, t), t

)
, and in the second integral they are evaluated at

(x, s, t). A comparison with the expression (7.23) for the material deriva-
tive yields

E′(t) =

∫

A(t)
Df (Jψ) dx ds, (7.26)

where

Df (Jψ) =
∂

∂t

(
Jψ

)
+

∂

∂x1

(
ẋ1Jψ

)
+

∂

∂x2

(
ẋ2Jψ

)
+

∂

∂s

(
ṡJψ

)
. (7.27)

The quantity Df (Jψ) will be termed a ‘flux derivative’ of Jψ, as the spatial
terms are expressed in terms of derivatives of fluxes.
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7.7. Conservation of mass

Now suppose that ψ̃(·, t) = ρ̃(·, t) is the density function (mass per unit
volume) at time t in some fluid domain, as seen in rectangular coordinates
in the inertial frame. The corresponding function on parameter space is then
defined by ψ(x, s, t) = ρ(x, s, t) = ψ̃

(
r̃(x, s, t), t

)
. Consider a volume of fluid

within this domain, and let A(t) and B(t) denote the regions in parameter
space and rectangular coordinates, respectively, that are occupied by this
volume at time t. The total mass of this volume of fluid at time t is∫

B(t)
ψ̃(·, t) dVB(t) =

∫

B(t)
ρ̃(·, t) dVB(t). (7.28)

Since the region B(t) follows the flow, the mass (7.28) must remain constant
in time. Equation (7.26) then implies

∫

A(t)
Df (Jρ) dx ds = 0

for all t. This relation holds for all regions A(t) within the fluid domain.
If the function Df (Jρ) is continuous everywhere, then Df (Jρ) = 0 at all
positions in space at all times, i.e.,

∂

∂t

(
Jρ

)
+

∂

∂x1

(
ẋ1Jρ

)
+

∂

∂x2

(
ẋ2Jρ

)
+

∂

∂s

(
ṡJρ

)
= 0. (7.29)

All quantities in (7.29) are functions of (x, s, t).
Equation (7.29) is the basic statement of conservation of mass, but it is

useful to re-write it as follows. The definition (7.10) of the metric coefficient
ms implies

ρ(x, s, t) =
1

α(x, s, t)
= − ps(x, s, t)

g ms(x, s, t)
. (7.30)

The definition J = m1m2ms from (7.17) implies

Jρ = −m1m2psg
−1, (7.31)

and equation (7.29) becomes

∂

∂t

(
Gps

)
+

∂

∂x1

(
ẋ1Gps

)
+

∂

∂x2

(
ẋ2Gps

)
+

∂

∂s

(
ṡGps

)
= 0, (7.32)

or equivalently,

∂

∂t

(
Gps

)
+ ∇ ·

(
ẋGps

)
+

∂

∂s

(
ṡGps

)
= 0. (7.33)

Here,

G(x, s, t) = m1

(
x, z(x, s, t)

)
m2

(
x, z(x, s, t)

)

≈ m1(x)m2(x),
(7.34)
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and ps = ∂p/∂s. As noted in Section 7.2, the metric coefficients m1 and
m2 are nearly independent of z, so to good approximation one can use
G(x) = m1(x)m2(x). In equations (7.32)–(7.33), the operations ∂/∂xi and
∇ are taken for fixed s, as the functions involved depend on (x, s, t).

In the mass conservation equation (7.32)–(7.33), the dependent variable
for mass is ps. This quantity indicates the change in hydrostatic pressure,
and thus the amount of mass, over the vertical distance between nearby
surfaces of constant s. In the special case where s is the elevation z, ps =
pz = −ρg, and in that case the density ρ can be used in place of ps in
(7.32)–(7.33).

7.8. Conservation of mass in layers

The role of ps = ∂p/∂s as the mass variable can be illuminated by examining
the conservation of mass in a layer bounded above and below by surfaces of
constant s. The following analysis also anticipates the vertical discretization
that is needed for solving the governing equations numerically.

Consider the fluid lying between the coordinate surfaces s = s0 and s =
s1, where s0 < s1. For any x and t, let

∆p(x, t) = p(x, s0, t) − p(x, s1, t) =

∫ s1

s0

(−ps) ds > 0. (7.35)

Due to the hydrostatic assumption, ∆p(x, t) represents the weight per unit
horizontal area in this layer, at horizontal position x at time t. Therefore
∆p equals the mass per unit horizontal area in the layer, times g, so ∆p
can be regarded as a two-dimensional density when the layer is viewed from
above. In an isopycnic setting this quantity indicates the thickness of the
layer, and ∆p is often labelled informally as the ‘layer thickness’.

Also define the mass-weighted vertical average of ẋ over the layer by

ẋ(x, t) =
1

∆p

∫ s1

s0

ẋ(x, s, t)(−ps) ds, (7.36)

and use the approximation G(x) = m1(x)m2(x). Now multiply the mass
equation (7.33) by −1 and integrate over s from s0 to s1 to obtain

∂

∂t

(
G∆p

)
+ ∇ ·

(
G¯̇x∆p

)
+ G

[(
ṡps

)
s=s0

−
(
ṡps

)
s=s1

]
= 0. (7.37)

The independent variables in (7.37) are the horizontal coordinates x1 and
x2 and the time t.

Equation (7.37) can be expressed in terms of linear velocity as follows. In
Section 7.9 it is shown that the horizontal components of linear velocity in
the x1- and x2-directions, relative to the rotating spheroid Σ, are u(x, s, t) =
m1ẋ1(x, s, t) and v(x, s, t) = m2ẋ2(x, s, t), respectively. Let ū(x, t) and
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Figure 7.2. Illustration of mass transport across coordinate
surfaces due to material changes in the vertical coordinate s.
If s is a thermodynamic variable, then a warming or cooling
of the fluid could cause changes in s for given fluid parcels.
Fluid can then cross coordinate surfaces, even if the fluid is
motionless in space. Similarly, if s is a hybrid coordinate,
then such transport could occur during a conversion between
isopycnic and geometric coordinates.

v̄(x, t) denote the mass-weighted vertical averages of u and v, respectively,
over the layer. Then ū(x, t) = m1

¯̇x1 and v̄(x, t) = m2
¯̇x2, and equation

(7.37) can be written as

∂

∂t

(
G∆p

)
+

∂

∂x1

(
m2ū∆p

)
+

∂

∂x2

(
m1v̄∆p

)

+ G
[(

ṡps

)
s=s0

−
(
ṡps

)
s=s1

]
= 0.

(7.38)

Equation (7.38) can be interpreted as follows. Integrate (7.38) with re-
spect to x1 and x2 on a rectangle R (in the x domain) having sides ∆x1

and ∆x2. The quantities m1∆x1 and m2∆x2 give the (approximate) lin-
ear dimensions of the corresponding rectangular region R̃ on the surface of
the rotating spheroid Σ. The area of R̃ is approximately m1m2∆x1∆x2 =
G∆x1∆x2, so G is the factor that relates horizontal ‘area’ in parameter
space to physical area on the surface of Σ. The quantity G∆x1∆x2∆p is
the mass in the given layer in R̃, times g, and the integrals on R of the
terms in (7.38) involving ∂/∂x1 and ∂/∂x2 can be interpreted in terms of
lateral mass transport across the edges of R̃.

The terms in (7.38) involving ṡps are less standard and represent transport
between layers due to material changes in the coordinate s. Consider the
coordinate surface s = s0, and for definiteness assume that ṡ > 0 on that
surface. The quantity ṡ is the time derivative of s as seen by an observer
that is fixed relative to the fluid, and nonzero values of ṡ may or may not
be due to any motion of the fluid. For example, if s is the reciprocal of
potential density or a related quantity, then a warming of the fluid could
cause ṡ > 0, even if the fluid is motionless relative to Σ. Over a time
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increment ∆t, the value of s seen by a fluid parcel changes by approximately
the amount ∆s = ṡ∆t. Now consider the two coordinate surfaces s = s0

and s = s0 − ∆s at time t. From time t to time t + ∆t, the fluid parcels
on these surfaces experience a change from s0 and s0 − ∆s to s0 + ∆s and
s0, respectively (see Figure 7.2). The coordinate surface s = s0 thus moves
downward relative to the fluid, but an observer on that surface sees fluid
crossing the surface in the upward direction. For the fluid that crosses the
surface s = s0 during the time increment ∆t, the weight per unit area is
approximately ∆s(−∂p/∂s) = ṡ∆t(−∂p/∂s), so the rate of mass flow per
unit time per unit horizontal area (times g) is −ṡps. Here, a positive rate
of flow indicates an upward movement of fluid relative to the coordinate
surface. The last two terms in equation (7.38) represent the net effect of
transport into or out of the layer by this mechanism.

7.9. Velocity

In preparation for deriving the equation for conservation of momentum, the
present subsection develops a representation for fluid velocity. This velocity
is expressed as a motion relative to the rotating spheroid Σ, plus a rigid-
body rotation of points attached to Σ.

As in Section 7.5, let (X, S) denote the position of a fluid parcel in pa-
rameter space at time 0, and denote the position of that parcel in parameter
space at any time t by

(
x(X, S, t), s(X, S, t)

)
. The position of that parcel,

relative to the rectangular coordinate system in the inertial reference frame,
can then be written in the form

R(X, S, t) = r
(
x(X, S, t), ẑ(X, S, t), t

)
.

Here, r(x, z, t) denotes the position in rectangular coordinates of the point
with coordinates (x, z) relative to Σ, as defined in Section 7.2, and ẑ(X, S, t)
denotes the elevation of the fluid parcel in question. More precisely,

ẑ(X, S, t) = z
(
x(X, S, t), s(X, S, t), t

)
,

where z(x, s, t) is the elevation of the coordinate surface as defined in Sec-
tion 7.3.

The velocity of a fluid parcel, as seen in rectangular coordinates in the
inertial frame, is then

∂R

∂t
(X, S, t) =

∂r

∂x1

∂x1

∂t
+

∂r

∂x2

∂x2

∂t
+

∂r

∂z

∂ẑ

∂t
+

∂r

∂t
. (7.39)

Here, the partial derivatives of r are evaluated at
(
x(X, S, t), ẑ(X, S, t), t

)
,

and the partial derivatives of x1, x2, and ẑ are evaluated at (X, S, t). The
relations (7.4) and (7.5) involving i, j, and k, and the definitions (7.21)
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of ẋ and ṡ, imply

∂R

∂t
(X, S, t) = m1ẋ1i + m2ẋ2j +

∂ẑ

∂t
k +

∂r

∂t
. (7.40)

In (7.40), m1 and m2 are evaluated at the point
(
x(X, S, t), ẑ(X, S, t)

)
; i,

j, and k are evaluated at
(
x(X, S, t), t

)
; and ẋ1 and ẋ2 are evaluated at(

x(X, S, t), s(X, S, t), t
)
.

In equations (7.39) and (7.40), the partial derivative ∂r/∂t is taken for
fixed position (x, z) relative to the rotating surface Σ, and it therefore rep-
resents the velocity associated with a rigid-body rotation about the given
axis. The remaining terms in (7.39) and (7.40) involve derivatives of r with
respect to position on Σ. They thus represent motion relative to Σ, and
their sum is termed the ‘relative velocity’.

For the horizontal components of the relative velocity, define

u(x, s, t) = m1

(
x, z(x, s, t)

)
ẋ1(x, s, t),

v(x, s, t) = m2

(
x, z(x, s, t)

)
ẋ2(x, s, t)

(7.41)

and define a vertical component w(x, s, t) by

∂z̃

∂t
(X, S, t) = w

(
x(X, S, t), s(X, S, t), t

)
. (7.42)

The particle velocity (7.40) can then be written as

∂R

∂t
(X, S, t) = ui + vj + wk +

∂r

∂t
, (7.43)

where the components u, v, and w are evaluated at
(
x(X, S, t), s(X, S, t), t

)
;

the unit vectors i, j, and k are evaluated at
(
x(X, S, t), t

)
; and the rigid-

body velocity ∂r/∂t is evaluated at
(
x(X, S, t), ẑ(X, S, t), t

)
.

The terms ui and vj are defined in terms of ∂r/∂x1 and ∂r/∂x2, via (7.39).
Given the definition of the position vector r, these partial derivatives are
taken for fixed z, so the vectors i and j are horizontal, i.e., tangent to Σ.
The quantities u and v thus represent components of velocity that are truly
horizontal, not components along surfaces of constant s. This is consistent
with the observation, made at the end of Section 7.3, that lateral displace-
ments are measured in terms of projections onto the horizontal instead of
along s-coordinate surfaces.

7.10. Momentum

In the present subsection we formulate the momentum of a volume of fluid
and calculate its time derivative.

Assume that a volume of fluid occupies a region A(t) in parameter space
at time t, and let B(t) denote the corresponding region in rectangular
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coordinates in the inertial reference frame. Also let Q(t) denote the to-
tal momentum of this volume of fluid, as seen in the inertial frame. Then
Q(t) is the integral on B(t) of the velocity times mass density; the change
of variables given in (7.19) implies

Q(t) =

∫

A(t)
ρ(x, s, t)

[
ui + vj + wk +

∂r

∂t

]
J(x, s, t) dx ds (7.44)

=

∫

A(0)
ρ(x, s, t)

[
ui + vj + wk +

∂r

∂t

]
J(x, s, t) H(X, S, t) dX dS.

Equation (7.30) and subsequent discussions imply ρJ = −m1m2psg
−1 =

−Gpsg
−1, so

Q(t) = −1

g

∫

A(0)

[(
Gups

)
i+

(
Gvps

)
j+

(
Gwps

)
k+Gps

∂r

∂t

]
H(X, S, t) dX dS.

(7.45)
Here, G, u, v, w, ps are evaluated at

(
x(X, S, t), s(X, S, t), t

)
; i, j, and k are

evaluated at
(
x(X, S, t), t

)
; ∂r/∂t is evaluated at

(
x(X, S, t), ẑ(X, S, t), t

)
;

and H(X, S, t) is the Jacobian from (X, S) to (x, s) defined in (7.20).
The next main task is to calculate the time derivative of (7.45). Several

terms in the integrand have the form

F̂ (X, S, t) = F
(
x(X, S, t), s(X, S, t), t

)
H(X, S, t),

and some calculations similar to those in (7.25)–(7.27) imply

∂F̂

∂t
(X, S, t) = Df (F ) H(X, S, t),

where the flux derivative

Df (F ) =
∂F

∂t
+

∂

∂x1

(
ẋ1F

)
+

∂

∂x2

(
ẋ2F

)
+

∂

∂s

(
ṡF

)
(7.46)

=
∂F

∂t
+ ∇ ·

(
ẋF

)
+

∂

∂s

(
ṡF

)

is evaluated at
(
x(X, S, t), s(X, S, t), t

)
. It then follows that

Q′(t) = −1

g

∫

A(0)

{
Df

(
Gups

)
i + Df

(
Gvps

)
j + Df

(
Gwps

)
k

+
(
Gups

)Di

Dt
+

(
Gvps

)Dj

Dt
+

(
Gwps

)Dk

Dt
(7.47)

+ Gps
∂

∂t

[
∂r

∂t

(
x(X, S, t), ẑ(X, S, t), t

)]}

H(X, S, t) dX dS.
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The derivation of (7.47) uses the relation Df

(
Gps

)
= 0, which is a way

of stating the equation (7.32)–(7.33) of conservation of mass. In (7.47),
the notation Di/Dt refers to the time derivative of i

(
x(X, S, t), t

)
, so

Di

Dt
=

∂i

∂t
+ ẋ1

∂i

∂x1
+ ẋ2

∂i

∂x2
, (7.48)

where ẋ1 and ẋ2 are evaluated at
(
x(X, S, t), s(X, S, t), t

)
. The terms Dj/Dt

and Dk/Dt are analogous.

The time derivative in the third line of (7.47) is

∂2r

∂t∂x1
ẋ1 +

∂2r

∂t∂x2
ẋ2 +

∂2r

∂t∂z

∂ẑ

∂t
+

∂2r

∂t2
, (7.49)

where the partial derivatives of r are evaluated at
(
x(X, S, t), ẑ(X, S, t), t

)
,

ẋ1 and ẋ2 are evaluated at
(
x(X, S, t), s(X, S, t), t

)
, and ∂ẑ/∂t is evaluated

at (X, S, t). According to the approximation introduced in (7.5),

∂2r

∂x1∂t
(x, z, t) = m1(x, z)

∂i

∂t
(x, t),

∂2r

∂x2∂t
(x, z, t) = m2(x, z)

∂j

∂t
(x, t),

(7.50)

and the definition (7.4) of k implies

∂2r

∂z∂t
(x, z, t) =

∂k

∂t
(x, t). (7.51)

The definitions (7.41) and (7.42) of the velocity components u, v, and w
imply that the expression (7.49) is equal to

u
∂i

∂t
+ v

∂j

∂t
+ w

∂k

∂t
+ ac, (7.52)

where ac = ∂2r/∂t2; u, v, and w are evaluated at
(
x(X, S, t), s(X, S, t), t

)
;

and the derivatives of i, j, and k are evaluated at
(
x(X, S, t), t

)
.

The quantity ∂2r/∂t2(x, z, t) is the second-order time derivative of the
position vector r, for a fixed position (x, z) relative to the rotating spheroid
Σ. The vector ac is thus the centripetal acceleration associated with a rigid-
body rotation. For present purposes, ac will be regarded as a function of
(x, s, t), where x and s are evaluated at (X, S, t) in (7.52).



Numerical modelling of ocean circulation 445

Equation (7.47) can now be written as

Q′(t) = −1

g

∫

A(t)

[
Df

(
Gups

)
i + Df

(
Gvps

)
j + Df

(
Gwps

)
k

+ Gpsac + Ψ
]
dx ds

(7.53)

where

Ψ = 2
(
Gups

)∂i

∂t
+ 2

(
Gvps

)∂j

∂t
+ 2

(
Gwps

)∂k

∂t

+
(
Gups

)(
ẋ1

∂i

∂x1
+ ẋ2

∂i

∂x2

)
(7.54)

+
(
Gvps

)(
ẋ1

∂j

∂x1
+ ẋ2

∂j

∂x2

)

+
(
Gwps

)(
ẋ1

∂k

∂x1
+ ẋ2

∂k

∂x2

)
.

In equations (7.53) and (7.54), i, j, k and their derivatives depend on (x, t),
and all other quantities depend on (x, s, t).

The time derivatives ∂i/∂t, ∂j/∂t, and ∂k/∂t in (7.54) are taken with
the position fixed relative to Σ. The terms containing these derivatives are
therefore due to the rotation of Σ. The remaining terms in (7.54) involve
the variation of the unit vectors i, j, and k with respect to position on
Σ, so these terms are due to the curvature of Σ and/or properties of the
parametrization of Σ in terms of x = (x1, x2).

According to the principle of conservation of momentum, Q′(t) is equal
to the sum of the various forces acting on the fluid volume. These forces are
due to pressure, gravity, stresses, and viscosity, and they will be discussed
in the next subsections.

7.11. Pressure and the Montgomery potential

As in the preceding subsection, assume that a volume of fluid occupies a
region A(t) in parameter space at time t, and let B(t) denote the corre-
sponding region in rectangular coordinates in the inertial reference frame.
Also, as in Section 7.3, let P (x, z, t) denote the pressure in the fluid corre-
sponding to horizontal position x, elevation z, and time t. Now let P̃ (r, t)
denote the pressure as seen in rectangular coordinates in the inertial frame,
i.e., P (x, z, t) = P̃

(
r(x, z, t), t

)
.

Let ∂B(t) denote the boundary of the region B(t) in rectangular coordi-
nates, and let n(r, t) denote the unit outward normal vector to ∂B(t). The
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net pressure force acting on the volume of fluid is then
∫

∂B(t)
−P̃ndA = −

∫

∂B(t)

(
P̃ n1, P̃ n2, P̃ n3

)
dA

= −
∫

∂B(t)

(
(P̃ , 0, 0) · n, (0, P̃ , 0) · n, (0, 0, P̃ ) · n

)
dA

= −
∫

B(t)

(
div(P̃ , 0, 0), div(0, P̃ , 0), div(0, 0, P̃ )

)
dVB(t)

= −
∫

B(t)

(
∂P̃

∂r1
,

∂P̃

∂r2
,

∂P̃

∂r3

)
dVB(t)

= −
∫

A(t)
∇P̃

(
r(x, z(x, s, t), t), t

)
J(x, s, t) dx ds. (7.55)

Here, the integration is performed component-by-component, the divergence
theorem is used on each component to obtain the third line, and the change
of variables described in Section 7.4 is used to obtain the last line. In the last
line, the notation ∇P̃

(
r
(
x, z(x, s, t), t

)
, t

)
refers to the value of ∇P̃ at the

indicated point; it does not indicate the derivative of a composite function.
The integral (7.55) can also be be expressed as

∫

∂B(t)
−P̃ndA = −

∫

A(t)

(
(∇P̃ · i)i + (∇P̃ · j)j + (∇P̃ · k)k

)
J(x, s, t) dx ds,

(7.56)
where i, j, and k are evaluated at (x, t). The relation (7.5) implies

∇P̃ · i =
1

m1
∇P̃

(
r
(
x, z(x, s, t), t

)
, t

)
· ∂r

∂x1
(x, z(x, s, t), t)

=
1

m1

∂P

∂x1

(
x, z(x, s, t), t

)
,

(7.57)

where m1 is evaluated at
(
x, z(x, s, t)

)
. Given the definition of the function

P , the partial derivative ∂P/∂x1 is taken for fixed z and then evaluated at(
x, z(x, s, t), t

)
. Similarly,

∇P̃ · j =
1

m2

∂P

∂x2

(
x, z(x, s, t), t

)
, (7.58)

and the definition (7.4) of k implies

∇P̃ · k =
∂P

∂z

(
x, z(x, s, t), t

)
. (7.59)

Now express the preceding in terms of functions of (x, s, t), as these will
be the independent variables in the final form of the governing equations.
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As in Section 7.3, let p(x, s, t) denote the pressure in terms of s, so that
p(x, s, t) = P

(
x, z(x, s, t), t

)
. Then, for i = 1 and i = 2,

∂p

∂xi
(x, s, t) =

∂P

∂xi
+

∂P

∂z

∂z

∂xi
(x, s, t)

=
∂P

∂xi
− g

α(x, s, t)

∂z

∂xi
(x, s, t),

(7.60)

where α(x, s, t) is the specific volume (reciprocal of density). The second
line is obtained by using the hydrostatic condition (7.8). Equation (7.60)
then implies

α(x, s, t)
∂P

∂xi

(
x, z(x, s, t), t

)
= α

∂p

∂xi
+ g

∂z

∂xi

=
∂M

∂xi
− p

∂α

∂xi
,

(7.61)

where

M(x, s, t) = α(x, s, t)p(x, s, t) + gz(x, s, t) (7.62)

is the Montgomery potential (Montgomery 1937). The hydrostatic condition
(7.8) also implies

α(x, s, t)
∂P

∂z

(
x, z(x, s, t), t

)
= −g.

The pressure force (7.56) can then be expressed in the form
∫

∂B(t)
−P̃ndA = −

∫

A(t)

[
1

m1

(
∂M

∂x1
− p

∂α

∂x1

)
i

+
1

m2

(
∂M

∂x2
− p

∂α

∂x2

)
j − gk

]
J(x, s, t)

α(x, s, t)
dx ds,

(7.63)

where m1 and m2 are evaluated at
(
x, z(x, s, t)

)
. According to equations

(7.31) and (7.34), J/α = Jρ = −m1m2psg
−1 = −Gpsg

−1, and (7.63) be-
comes∫

∂B(t)
−P̃ndA =

1

g

∫

A(t)

[
1

m1

(
∂M

∂x1
− p

∂α

∂x1

)
i

+
1

m2

(
∂M

∂x2
− p

∂α

∂x2

)
j − gk

]
Gps dx ds.

(7.64)

In the earlier expression (7.56) for the pressure force, the coefficients of i

and j represent the components that are horizontal, i.e., in directions tan-
gent to the rotating spheroid Σ, and the derivatives in (7.57) and (7.58)
are taken for fixed z. However, when the independent variables are (x, s, t),
derivatives with respect to x1 and x2 are taken for fixed s, and these direc-
tions need not be horizontal. The usage of the Montgomery potential (7.62)
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enables derivatives for fixed s to yield components of the pressure force that
are in the directions of the horizontal vectors i and j.

The vertical variation of the Montgomery potential can be determined by
observing

∂M

∂s
(x, s, t) = p

∂α

∂s
+ α

∂p

∂s
+ g

∂z

∂s

= p
∂α

∂s
.

(7.65)

The condition αps + gzs = 0 follows from equation (7.9), which in turn
follows from the hydrostatic condition (7.8). Equation (7.65) can be re-
garded as a statement of the hydrostatic condition in a generalized vertical
coordinate.

7.12. Diffusion of momentum

One mechanism for the transport of momentum within a fluid is the mixing
caused by small-scale turbulence and molecular diffusion. In the ocean
the effects of molecular diffusion are negligible compared to the effects of
turbulence, so molecular diffusion will not be considered here. In numerical
models of ocean circulation it is generally not possible to represent the
details of turbulent motions, owing to insufficient grid resolution, so instead
it is necessary to parametrize the large-scale effects of these subgrid-scale
motions in terms of the dependent variables that are used in the model. This
problem has long been an active area of research; see, e.g., Griffies (2004)
or Pedlosky (1987). In present-day practice, operational ocean models often
use a parametrization that involves some sort of Laplacian or biharmonic
diffusion.

As noted in Section 2.4, mixing in the ocean’s interior is highly anisotropic,
with the principle directions of mixing being approximately horizontal. In
the present subsection, we assume that the vertical coordinate s is an iso-
pycnic coordinate and that the mixing occurs primarily along surfaces of
constant s. In addition, we represent the subgrid-scale processes in terms
of a diffusion that is proportional to the gradient of velocity, in analogy to
molecular diffusion, and the diffusion is separated into a component tan-
gent to coordinate surfaces and a component normal to such surfaces. The
following analysis produces a parametrization similar to the one used, for
example, by Bleck and Smith (1990) and Bleck (2002) for isopycnic models.

As in the preceding two subsections, assume that a volume of fluid oc-
cupies a region A(t) in parameter space at time t, and denote by B(t)
the corresponding region in rectangular coordinates in the inertial reference
frame. For each (x, s) ∈ A(t), let r̃(x, s, t) = r

(
x, z(x, s, t), t

)
denote the

corresponding point in B(t), as in equation (7.11).



Numerical modelling of ocean circulation 449

In order to formulate the highly anisotropic diffusion considered here, it
is useful to define a local coordinate system, at each point in the fluid, that
involves a plane tangent to a surface of constant s and a vector normal to
that surface. A starting point is provided by the tangent vectors ∂r̃/∂x1

and ∂r̃/∂x2. Equations (7.11), (7.4), and (7.5) imply

∂r̃

∂x1
(x, s, t) =

∂r

∂x1
+

∂r

∂z

∂z

∂x1

= m1i +
∂z

∂x1
k

= m1

(
i + δ1k

)
,

where δ1(x, s, t) is the slope of a surface of constant s in the x1-direction, m1

is evaluated at
(
x, z(x, s, t)

)
, and i and k are evaluated at (x, t). Similarly,

∂r̃

∂x2
(x, s, t) = m2

(
j + δ2k

)
,

where δ2(x, s, t) is the slope of a surface of constant s in the x2-direction.
Unit tangent vectors ĩ and j̃ to a coordinate surface are then defined by

∂r̃

∂x1
(x, s, t) = m̃1(x, s, t)

i + δ1k√
1 + δ2

1

≡ m̃1(x, s, t) ĩ(x, s, t),

∂r̃

∂x2
(x, s, t) = m̃2(x, s, t)

j + δ2k√
1 + δ2

2

≡ m̃2(x, s, t) j̃(x, s, t),

where

m̃i(x, s, t) =

∣∣∣∣
∂r̃

∂xi
(x, s, t)

∣∣∣∣ = mi

√
1 + δ2

i = mi

(
1 + O(δ2)

)
(7.66)

for i = 1, 2. Here, δ is an upper bound for |δ1| and |δ2|. In the interior
of the ocean, the slopes of isopycnals generally do not reach much above
10−2 (Griffies et al. 2000a), so typically δ ≈ 10−2. The quantity m̃i can
be regarded as a metric coefficient that relates increments in the parameter
xi to spatial increments along s-coordinate surfaces, whereas the metric co-
efficient mi relates increments in xi to spatial increments that are horizontal.

For any (x, s, t), the vectors ĩ(x, s, t) and j̃(x, s, t) provide a basis for the
tangent plane to the coordinate surface at that position and time. However,
these vectors are not exactly orthogonal, as ĩ · j̃ = O(δ2). Orthogonal unit
vectors can be obtained by rotating ĩ and/or j̃ through an angle of magnitude
O(δ2) in that plane. This process is not uniquely determined, but assume
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that orthogonal unit vectors î and ĵ in that plane have been obtained so that

î(x, s, t) = ĩ + O(δ2) =
1

m̃1(x, s, t)

∂r̃

∂x1
(x, s, t) + O(δ2),

ĵ(x, s, t) = j̃ + O(δ2) =
1

m̃2(x, s, t)

∂r̃

∂x2
(x, s, t) + O(δ2).

(7.67)

The boldface font in the order terms is used to indicate vector quantities.
Now define a unit normal vector k̂ by

k̂(x, s, t) = î × ĵ

=

[
i + δ1k√

1 + δ2
1

+ O(δ2)

]
×

[
j + δ2k√

1 + δ2
2

+ O(δ2)

]
(7.68)

= k − δ1i − δ2j + O(δ2).

Here, it is assumed that the coordinate system on the rotating spheroid Σ
is right-handed, in the sense that i × j = k, k × j = −i, and i × k = −j.
Equation (7.11), r̃(x, s, t) = r

(
x, z(x, s, t), t

)
, together with equations (7.4)

and (7.10), imply

∂r̃

∂s
(x, s, t) =

∂r

∂z

∂z

∂s
= ms(x, s, t) k(x, t).

It then follows from (7.68) that

k̂(x, s, t) =
1

ms(x, s, t)

∂r̃

∂s
(x, s, t) + O(δ). (7.69)

The representation of diffusion will initially be formulated in the region
B(t) in rectangular coordinates in the inertial reference frame. For that

purpose, define the unit vectors Î, Ĵ, and K̂ on B(t) by

î(x, s, t) = Î
(
r̃(x, s, t), t

)
,

ĵ(x, s, t) = Ĵ
(
r̃(x, s, t), t

)
,

k̂(x, s, t) = K̂
(
r̃(x, s, t), t

)
,

for all (x, s) ∈ A(t). Also define components U and V of horizontal velocity,
with the independent spatial variables in B(t), by

u(x, s, t) = U
(
r̃(x, s, t), t

)
,

v(x, s, t) = V
(
r̃(x, s, t), t

)
,

(7.70)

for all (x, s) ∈ A(t).
Now consider a parametrization of the diffusion of the component u. This

will provide a term in the coefficient of i in equation (7.53), which gives the
derivative Q′(t) of the momentum of the volume of fluid considered here.
The diffusion of the component v is represented similarly. A component in
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the direction of k will not be considered here, as the vertical component of
momentum conservation will be represented with the hydrostatic balance.

Assume that the momentum flux associated with u, i.e., the rate of trans-
port of u-momentum per unit cross-sectional area per unit time, is given by

−ρAH

(
∇U · Î

)
Î − ρAH

(
∇U · Ĵ

)
Ĵ − ρAD

(
∇U · K̂

)
K̂, (7.71)

where ρ is the density of the fluid, AH is a kinematic viscosity coefficient
for diffusion in directions that are tangent to s-coordinate surfaces, and
AD is a kinematic viscosity for diapycnal diffusion normal to such sur-
faces. All quantities in (7.71) are evaluated at points (r, t) for r ∈ B(t),
except that AH and AD could perhaps be taken as constant, and ∇U =
(∂U/∂r1, ∂U/∂r2, ∂U/∂r3).

The net rate of diffusion of momentum into the region B(t) is given by
the integral of the negative of the outward normal component of (7.71) over
∂B(t). This integral needs to be represented in terms of an integral over
the region A(t), as the quantity Q′(t) in (7.53) also involves an integral
over that region. Toward that end, represent the boundary ∂A(t) of A(t) in
terms of parameters σ = (σ1, σ2) by

b(σ, t) = b(σ1, σ2, t) =
(
x(σ, t), s(σ, t)

)
(7.72)

for all σ in a parameter region Γ. The boundary ∂B(t) of B(t) is then
represented by

B(σ, t) = r̃
(
b(σ1, σ2, t), t

)
= r̃

(
x(σ, t), s(σ, t), t

)
(7.73)

for σ ∈ Γ. The net rate of diffusion of momentum into the region B(t) in
rectangular coordinates in the inertial frame is then
∫

Γ

[
ρAH

(
∇U ·Î

)
Î+ρAH

(
∇U ·Ĵ

)
Ĵ+ρAD

(
∇U ·K̂

)
K̂

]
·
(

∂B

∂σ1
× ∂B

∂σ2

)
dσ1 dσ2.

(7.74)
Here, it is assumed that the parameters σ = (σ1, σ2) are chosen so that the
cross product in (7.74) points out of the region B(t). The quantities in the
square brackets are evaluated at B(σ, t).

Equations (7.73), (7.67), and (7.69) imply

∂B

∂σi
=

∂r̃

∂x1

∂x1

∂σi
+

∂r̃

∂x2

∂x2

∂σi
+

∂r̃

∂s

∂s

∂σi

= m̃1

(̂
i + O(δ2)

)∂x1

∂σi

+ m̃2

(̂
j + O(δ2)

)∂x2

∂σi
(7.75)

+ ms

(
k̂ + O(δ)

) ∂s

∂σi

= D(σ, t)qi(σ, t) + ei,
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where

D(σ, t) =
[̂
i, ĵ, k̂

]

qi(σ, t) =

(
m̃1

∂x1

∂σi
, m̃2

∂x2

∂σi
, ms

∂s

∂σi

)T

,
(7.76)

where ei is an error vector involving δ2(m̃1∂x1/∂σi), δ2(m̃2∂x2/∂σi), and
δ(ms∂s/∂σi). The notation for D(σ, t) specifies a 3 × 3 matrix having the
indicated columns, and qi is a column vector. In (7.75) and (7.76), the

quantities m̃1, m̃2, ms, î, ĵ, and k̂ are evaluated at
(
x(σ, t), s(σ, t), t

)
; and

the partial derivatives of x1, x2, and s are evaluated at (σ, t). Since D is a
unitary matrix, it follows that

∂B

∂σ1
× ∂B

∂σ2
= D(σ, t)

(
q1 × q2

)
+ O(e × q),

where q1 × q2 is regarded as a column vector, and the error term O
(
e× q

)

involves δ, δ2, and higher powers.
The net rate of diffusion (7.74), after neglecting the error terms involving

δ, can then be written in the form
∫

Γ

[
F1î + F2ĵ + F3k̂

]
·
[
D(σ, t)

(
q1 × q2

)]
dσ1 dσ2, (7.77)

where F1î + F2ĵ + F3k̂ is evaluated at
(
x(σ, t), s(σ, t), t

)
, and the terms

F1, F2, and F3 are defined by comparing with (7.74). The dot product in
(7.77) can be represented as a row vector times a column vector, so (7.77)
is equal to

∫

Γ

(
F1, F2, F3

)
DT D

(
q1 × q2

)
dσ1 dσ2 (7.78)

=

∫

Γ

(
F1, F2, F3

)
q1 × q2 dσ1 dσ2

=

∫

Γ

(
m̃2msF1, m̃1msF2, m̃1m̃2F3

) ∂b

∂σ1
× ∂b

∂σ2
dσ1 dσ2

=

∫

∂A(t)

(
m̃2msF1, m̃1msF2, m̃1m̃2F3

)
· n∂A(t) dA∂A(t)

=

∫

A(t)

[
∂

∂x1

(
m̃2msF1

)
+

∂

∂x2

(
m̃1msF2

)
+

∂

∂s

(
m̃1m̃2F3

)]
dx1 dx2 ds.

The third line in (7.78) arises from examining the roles of the factors m̃1,
m̃2, and ms in qi on the cross product and observing that the components
of b(σ, t) are x1(σ, t), x2(σ, t), and s(σ, t). The integrands in the second and
third lines have the form of a row vector times a column vector. The fourth
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line is an integral on the boundary ∂A(t) of the region A(t) in parameter
space, and n∂A(t)(x, s, t) is the unit outward normal to that boundary. The
last line is obtained by using the divergence theorem in parameter space,
with independent variables (x1, x2, s).

Equations (7.74), (7.77), (7.67), and (7.70) imply

F1(x, s, t) = ρAH∇U
(
r̃(x, s, t), t

)
· î(x, s, t)

= ρAH∇U ·
[

1

m̃1(x, s, t)

∂r̃

∂x1
(x, s, t) + O(δ2)

]

= ρAH

[
1

m̃1(x, s, t)

∂u

∂x1
(x, s, t) + O(δ2)

]
.

Similarly,

F2(x, s, t) = ρAH

[
1

m̃2(x, s, t)

∂u

∂x2
(x, s, t) + O(δ2)

]
,

F3(x, s, t) = ρAD

[
1

ms(x, s, t)

∂u

∂s
(x, s, t) + O(δ)

]
.

According to equation (7.66), m̃i can be replaced by mi for i = 1 and i = 2,
to order δ2. If the error terms involving δ and higher powers are neglected,
then (7.78) can be written as

∫

A(t)

[
∂

∂x1

(
ρAH

(
1

m1

∂u

∂x1

)
m2ms

)
+

∂

∂x2

(
ρAH

(
1

m2

∂u

∂x2

)
m1ms

)

+
∂

∂s

(
ρAD

(
1

ms

∂u

∂s

)
m1m2

)]
dx1 dx2 ds. (7.79)

The integral (7.79) represents the net rate of diffusion of the u-component
of momentum into the volume of fluid that occupies the region A(t) in pa-
rameter space and the region B(t) in rectangular coordinates in the inertial
reference frame. The rate of diffusion of the v-component is obtained by
replacing u with v in (7.79).

7.13. Applied stresses plus diffusion

The ocean is subjected to forces due to wind stress at the top of the fluid
and frictional stress along the bottom. In the present subsection we de-
velop a representation of these forces and then combine that result with the
representation (7.79) of diffusion.

Here, it is assumed that each of these stresses acts as a body force near
the top or bottom boundary, with the amplitude of the stress decaying with
distance from the boundary. In the case of an isopycnic-coordinate ocean
model, layer thicknesses can tend to zero due to interfaces intersecting the
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top or bottom of the fluid domain. If the wind or bottom stress were
applied strictly as a surface force, then nonzero forcing could be applied to
layers having essentially zero thickness. This would have adverse algorithmic
consequences, whereas the assumption of a decaying body force enables the
forcing to be distributed proportionately when thin layers are found near
the boundary.

Assume that the wind and bottom stresses act horizontally, and denote
the sum of the stresses by τ

wb = τwb
u i + τwb

v j. Near the upper boundary
τ

wb is due to the wind, near the bottom boundary τ
wb is due to bottom

friction, and in the ocean’s interior τ
wb is zero. Along any horizontal plane,

τ
wb represents a horizontal force, per unit horizontal area, that is exerted by

the upper region on the lower region. The net force, due to τ
wb, acting on

the volume of fluid contained in the region B(t) in rectangular coordinates
is then given by ∫

∂B(t)
τ

wb(k · n) dA, (7.80)

where n(r, t) denotes the unit outward normal to the boundary ∂B(t).
The statement (7.80) can be justified as follows. The quantity k · n is

the vertical component of the unit outward normal. If an element ∆A of
∂B(t) is horizontal and lies on the upper part of ∂B(t), then k · n = 1,
and the corresponding contribution to (7.80) is τ

wb∆A. This is the product
of the area and the force per unit area, and it is consistent with the sign
convention that a stress represents the force exerted by an upper region on
a lower region. On the other hand, if ∆A is horizontal and lies on the lower
part of ∂B(t), then k ·n = −1, and the corresponding contribution to (7.80)
is −τ

wb∆A. The minus sign indicates the effect of a lower region on an
upper region.

For a general element of area ∆A on ∂B(t), the quantity (k · n)∆A is a
signed projection of that area onto a horizontal plane. Consider the element
of fluid bounded by ∆A, the horizontal projection, and a vertical surface.
The quantity FH = −τ

wb(k · n)∆A represents the force exerted on the
element of fluid along that horizontal projection. If F∆A represents the
force exerted along the area element ∆A, then the net force acting on the
fluid element, due to the horizontal stress τ

wb, is F∆A +FH . This net force
is proportional to the volume of the fluid element and thus varies as the
cube of distance. However, F∆A and FH vary as the square of distance, so
for sufficiently small elements F∆A ≈ −FH = τ

wb(k · n)∆A.
The force (7.80) can be represented as an integral on the region A(t) in

parameter space by using techniques similar to those used in the preceding
subsection. In the present case, parametrize ∂B(t) by

Bz(σ, t) = r
(
x(σ, t), z(σ, t), t

)
, (7.81)
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so that

∂Bz

∂σi
=

∂r

∂x1

∂x1

∂σi
+

∂r

∂x2

∂x2

∂σi
+

∂r

∂z

∂z

∂σi

= m1
∂x1

∂σi
i + m2

∂x2

∂σi
j + ms

∂s

∂σi
k.

(7.82)

Calculations similar to those in (7.74)–(7.78) imply that the force (7.80) is
equal to ∫

A(t)

[
∂

∂s

(
m1m2τ

wb
u

)
i +

∂

∂s

(
m1m2τ

wb
v

)
j

]
dx1 dx2 ds. (7.83)

During these calculations, ĩ, j̃, k̃, m̃1, and m̃2 are replaced by i, j, k, m1,
and m2, respectively, and there are no error terms involving δ.

Now combine the representation (7.83) of the applied stresses with the
representation (7.79) for the diffusion of the u-component of momentum
and the analogous formula for the v-component. According to (7.10), the
hydrostatic condition implies ρms = −ps/g, and this relation can be inserted
into the first two terms in (7.79). For the u-component, the combined effect
of diffusion and applied stress is

−1

g

∫

A(t)

[
∂

∂x1

(
AH

(
1

m1

∂u

∂x1

)
m2ps

)
+

∂

∂x2

(
AH

(
1

m2

∂u

∂x2

)
m1ps

)

− ∂

∂s

(
gτuG

)]
dx1 dx2 ds,

(7.84)

where G = m1m2 and

τu = τwb
u + ρAD

(
1

ms

∂u

∂s

)
. (7.85)

The corresponding formulas for the v-component are obtained by replacing
u with v in (7.84) and (7.85).

The second term in (7.85) can also be regarded as ρAD∂u/∂z, and it rep-
resents the internal friction due to vertical variations in horizontal velocity.
This term represents a form of shear stress, and in (7.85) it is combined
with the shear stress τwb

u due to wind forcing and bottom friction to yield
the total shear stress τu in the u-direction. Analogous remarks apply to the
total shear stress τv in the v-direction.

7.14. Conservation of momentum

Equation (7.53) gives the derivative Q′(t) of the momentum of the volume
of fluid that occupies the region A(t) in parameter space and the region
B(t) in rectangular coordinates in the inertial reference frame, at time t.
According to the principle of conservation of momentum, Q′(t) is equal to
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the sum of the forces acting on that volume of fluid due to pressure, gravity,
applied stresses, and diffusion of momentum. In the present subsection the
results of the preceding subsections are combined to express this principle
in terms of partial differential equations.

The formula for Q′(t) in (7.53) includes a term involving the centripetal
acceleration ac. According to the hydrostatic assumption stated in Sec-
tion 7.1, ac is equal to the gravitational acceleration plus the vertical com-
ponent of the pressure force per unit mass. It then follows that the term
involving centripetal acceleration in the formula for Q′(t) is balanced by
terms involving gravity and the vertical component of the pressure force.
These terms will then be deleted from the following discussion. The vertical
velocity w will also be neglected, due to the hydrostatic assumption, and
from now on the discussion focuses on the horizontal component of Q′(t).

This component can be expressed as

Q′

H(t) = −1

g

∫

A(t)

[(
Df (Gups)+Ψ · i

)
i+

(
Df (Gvps)+Ψ · j

)
j
]
dx ds, (7.86)

where Ψ is defined in (7.54). When Ψ · i and Ψ · j are calculated, the terms
in Ψ involving k can be neglected, as these involve the vertical velocity w.
In addition, i(x, t) · i(x, t) = 1, j(x, t) · j(x, t) = 1, and i(x, t) · j(x, t) = 0 for
all (x, t), so

i · ∂i

∂t
= i · ∂i

∂xi
= j · ∂j

∂t
= j · ∂j

∂xi
= 0,

i · ∂j

∂t
= −j · ∂i

∂t
,

i · ∂j

∂xi
= −j · ∂i

∂xi
.

(7.87)

It then follows from (7.54) that

Ψ · i =
(
Gvps

)[
2 i · ∂j

∂t
+ i ·

(
ẋ1

∂j

∂x1
+ ẋ2

∂j

∂x2

)]
,

Ψ · j =
(
Gups

)[
2 j · ∂i

∂t
+ j ·

(
ẋ1

∂i

∂x1
+ ẋ2

∂i

∂x2

)]
.

(7.88)

The last two lines in (7.87) imply that the bracketed quantities in (7.88) are
negatives of each other.

Define the Coriolis parameter f by

f(x) = 2 j · ∂i

∂t
(7.89)

for all x. The partial derivative ∂i/∂t is taken for a fixed position on
the rotating spheroid Σ, so the presence of f is due to the rotation of
Σ. The right side of (7.89) appears to depend on t; however, the alternate
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representation developed in Section 7.15 shows that f is independent of t
and is also independent of the choice of coordinate system on Σ.

The remaining terms in the square brackets in (7.88) involve the variation
of i and j with respect to position on Σ, for fixed t. These terms are therefore
due to the curvature of Σ and/or the properties of the parametrization of
Σ in terms of x. The quantities ẋ1 and ẋ2 can depend on (x, s, t), but the
dot products of the quantities involving i and j depend only on x.

Let

f̃(x, s, t) = f(x) + j ·
(

ẋ1
∂i

∂x1
+ ẋ2

∂i

∂x2

)
(7.90)

denote the sum of the Coriolis and geometric parameters. The derivative
(7.86) of the horizontal component of momentum then becomes

Q′

H(t) = −1

g

∫

A(t)

[(
Df (Gups) − f̃Gvps

)
i

+
(
Df (Gvps) + f̃Gups

)
j

]
dx ds.

(7.91)

Now compare to the pressure force (7.64) and the combined effect (7.84)
of the diffusion and applied stresses to obtain the momentum equations

Df

(
Gups

)
− f̃Gvps = − 1

m1

(
∂M

∂x1
− p

∂α

∂x1

)
Gps −

∂

∂s

(
gτuG

)
+ ψu,

Df

(
Gvps

)
+ f̃Gups = − 1

m2

(
∂M

∂x2
− p

∂α

∂x2

)
Gps −

∂

∂s

(
gτvG

)
+ ψv.

(7.92)

The flux derivative Df is defined in (7.46), G = m1m2, the Montgomery
potential M = αp+gz is defined in (7.62), the total shear stress τu is defined
in (7.85), and

ψu =
∂

∂x1

(
AH

(
1

m1

∂u

∂x1

)
m2ps

)
+

∂

∂x2

(
AH

(
1

m2

∂u

∂x2

)
m1ps

)
(7.93)

represents the diffusion of u along the s-coordinate surfaces. The quantities
τv and ψv are analogous. The terms ψu and ψv, and the terms involving
AD in τu and τv, depend on the particular parametrization of subgrid-scale
mixing developed in Section 7.12.

The pressure forcing on the right sides in (7.92) can be expressed in the
form −(∇M − p∇α)Gps. Depending on the exact choice of the vertical
coordinate s, it is possible for the terms ∇M and p∇α to be far larger
than their difference, under certain conditions. This situation can lead
to numerical inaccuracy and even numerical instability. However, these
problems can be remedied by proper choices of the details of the vertical
coordinate and a proper implementation of the pressure term: see, e.g., Sun
et al. (1999), Bleck (2002), and Hallberg (2005).
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Figure 7.3. The Coriolis parameter f = 2Ω · k = 2Ω sin θ is
the local vertical component of the planetary vorticity 2Ω.
This parameter is zero at the equator and has maximum
magnitude at the poles.

7.15. The Coriolis parameter

Here we develop a more transparent representation of the Coriolis parameter
f(x) = 2j · ∂i

∂t
given in (7.89). Equations (7.1) and (7.3) imply

i(x, t) = Q(Ωt)i(x, 0) and j(x, t) = Q(Ωt)j(x, 0),

where Q(Ωt) is a rotation matrix. Then

∂i

∂t
(x, t) = ΩQ′(Ωt)i(x, 0) = ΩQ′(Ωt)QT (Ωt)i(x, t),

where the superscript T denotes the transpose. A calculation shows that
∂i

∂t
(x, t) = Ω × i(x, t), which is the velocity associated with a rigid-body

rotation. Here, Ω is a vector with length Ω that is aligned with the axis of
rotation, and the direction of Ω and the direction of rotation are related by
the right-hand rule. It then follows that f = 2j · (Ω× i) = 2Ω · (i× j). Now
assume that the local coordinate system on Σ is right-handed, in the sense
that i × j = k. The Coriolis parameter can then be written as

f(x) = 2Ω · k = 2Ω sin θ, (7.94)

where θ is the latitude. The second equality neglects the slight departure
of Σ from being a perfect sphere.

A calculation shows that if the fluid is motionless relative to the rotating
spheroid Σ, then the vorticity (curl of velocity) of that fluid relative to the
inertial reference frame is 2Ω. The term ‘planetary vorticity’ is commonly
applied to this vorticity. At any point on the spheroid, the value of the
Coriolis parameter is then the local vertical component of the planetary
vorticity, as illustrated in Figure 7.3.
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The Coriolis parameter is zero at the equator, positive in the northern
hemisphere, and negative in the southern hemisphere. The Earth rotates
at a rate of approximately 2π + 2π/360.24 radians in 24 hours, and for the
Earth the maximum value of |f | is 2Ω ≈ 1.46 × 10−4 sec−1.

7.16. Conservation of momentum in layers

The partial differential equations (7.92) describe the conservation of mo-
mentum in the x1- and x2-directions, respectively. In anticipation of solving
these equations numerically, we now develop the vertically discrete equations
obtained by integrating the equations (7.92) with respect to s between the
coordinate surfaces s = s0 and s = s1, with s0 < s1. The present discussion
is an analogue of the discussion of conservation of mass in layers given in
Section 7.8.

As in Section 7.8, let

∆p(x, t) = p(x, s0, t) − p(x, s1, t) =

∫ s1

s0

(−ps) ds > 0, (7.95)

and define mass-weighted vertical averages of the velocity components u
and v by

ū(x, t) =
1

∆p

∫ s1

s0

u(x, s, t)(−ps) ds,

v̄(x, t) =
1

∆p

∫ s1

s0

v(x, s, t)(−ps) ds.

(7.96)

Denote the deviations from these averages by δu and δv, respectively, so
that u(x, s, t) = ū(x, t) + δu(x, s, t) and v(x, s, t) = v̄(x, t) + δv(x, s, t). It
then follows that

∫ s1

s0

δu(x, s, t)(−ps) ds =

∫ s1

s0

δv(x, s, t)(−ps) ds = 0 (7.97)

and δu = O(∆s) and δv = O(∆s), where ∆s = s1 − s0.
Now consider the vertical integral of the u-equation in (7.92). The flux

derivative in the u-equation is

Df

(
Gups

)
=

∂

∂t

(
Gups

)
+

∂

∂x1

(
ẋ1Gups

)
+

∂

∂x2

(
ẋ2Gups

)
+

∂

∂s

(
ṡGups

)

=
∂

∂t

(
Gups

)
+

∂

∂x1

(
uupsm2

)
+

∂

∂x2

(
vupsm1

)
+

∂

∂s

(
ṡGups

)
.

(7.98)

The second equality uses the relations u = m1ẋ1, v = m2ẋ2, and G = m1m2.
From now on, use the approximation G(x) = m1(x)m2(x), as discussed in
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Section 7.7. Multiply (7.98) by −1 and integrate over s to obtain

−
∫ s1

s0

Df

(
Gups

)
ds =

∂

∂t

(
Gū∆p

)
+

∂

∂x1

(
m2

∫ s1

s0

uu(−ps) ds

)

+
∂

∂x2

(
m1

∫ s1

s0

vu(−ps) ds

)
(7.99)

+ G
[(

ṡpsu
)
s=s0

−
(
ṡpsu

)
s=s1

]
.

The relations (7.95) and (7.97) imply
∫ s1

s0

uu(−ps) ds =

∫ s1

s0

(ū + δu)(ū + δu)(−ps) ds

= ūū∆p + O(∆s)3,

so equation (7.99) becomes

−
∫ s1

s0

Df (Gups) ds =
∂

∂t

(
G(ū∆p)

)
+

∂

∂x1

(
m2ū(ū∆p)

)

+
∂

∂x2

(
m1v̄(ū∆p)

)
+ O(∆s)3 (7.100)

+ G
[(

ṡpsu
)
s=s0

−
(
ṡpsu

)
s=s1

]
.

The remaining terms in the u-equation in (7.92) can be handled in a similar
manner. The resulting vertically integrated u-equation, after the deletion
of error terms, is

∂

∂t

(
G(ū∆p)

)
+

∂

∂x1

(
m2ū(ū∆p)

)
+

∂

∂x2

(
m1v̄(ū∆p)

)

+ G
[(

ṡpsu
)
s=s0

−
(
ṡpsu

)
s=s1

]

− f̄G
(
v̄∆p

)

= − G∆p
1

m1

(
∂M

∂x1
− p̄

∂ᾱ

∂x1

)
+ Gg∆τu + ψ̄u

(7.101)

where ∆τu =
(
τu)s=s1

−
(
τu)s=s0

denotes the vertical difference of the total
shear stress defined in (7.85); f̄(x, t) is the mass-weighted vertical average
of the Coriolis/geometric parameter (7.90), i.e.,

f̄(x, t) = f(x) + j ·
(

ū
1

m1

∂i

∂x1
+ v̄

1

m2

∂i

∂x2

)
; (7.102)

M , ᾱ, and p̄, respectively, are the mass-weighted vertical averages of M , α,
and p; and ψ̄u is the vertical integral of the lateral diffusion term (7.93), i.e.,

ψ̄u =
∂

∂x1

(
AH

(
1

m1

∂ū

∂x1

)
m2∆p

)
+

∂

∂x2

(
AH

(
1

m2

∂ū

∂x2

)
m1∆p

)
. (7.103)
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The u-momentum equation (7.101) can be interpreted as follows. As
noted in Section 7.8, ∆p(x, t) is the weight per unit horizontal area in the
fluid layer lying between the coordinate surfaces s = s0 and s = s1. The
quantities ū∆p and v̄∆p then represent components of momentum density
(momentum per unit horizontal area), times g. In analogy to the discus-
sion of the mass equation given in Section 7.8, integrate the u-momentum
equation (7.101) on a rectangle R in the x domain having sides ∆x1 and
∆x2. The quantities m1∆x1 and m2∆x2 give the (approximate) linear di-
mensions of the corresponding rectangular region R̃ on the surface of the
rotating spheroid Σ. The quantity G∆x1∆x2

(
ū∆p

)
= m1∆x1m2∆x2

(
ū∆p

)

is then the u-component of momentum in the given layer in R̃, times g.
The integrals of the second and third terms in (7.101) (involving ∂/∂x1 and
∂/∂x2) can be interpreted in terms of the lateral advection of momentum
across the edges of R̃.

As described in Section 7.8, the quantity −ṡps is the rate of flow of mass
per unit area (times g) across a coordinate surface due to material changes
in s. The terms involving ṡpsu then represent the rate of transport of u-
momentum across coordinate surfaces due to the movement of such surfaces
relative to the fluid.

The vertical integral of the v-equation in (7.92) is derived in a manner
similar to that of (7.101), and the result is

∂

∂t

(
G(v̄∆p)

)
+

∂

∂x1

(
m2ū(v̄∆p)

)
+

∂

∂x2

(
m1v̄(v̄∆p)

)

+ G
[(

ṡpsv
)
s=s0

−
(
ṡpsv

)
s=s1

]

+ f̄G
(
ū∆p

)

= − G∆p
1

m2

(
∂M

∂x2
− p̄

∂ᾱ

∂x2

)
+ Gg∆τv + ψ̄v,

(7.104)

where ψ̄v is obtained by replacing ū with v̄ in (7.103).

Equations (7.101) and (7.104) describe the conservation of horizontal mo-
mentum in a coordinate layer. In these equations the dependent variables
are the components of momentum density, and the second and third terms
in each equation are written in terms of the horizontal flux of that den-
sity. This formulation facilitates the usage of (nearly) nonoscillatory advec-
tion schemes for solving these equations numerically. However, it has been
commonplace in the ocean modelling community to use the components
of velocity as the dependent variables, and the corresponding form of the
momentum equations can be obtained by combining equations (7.101) and
(7.104) with the layer mass equation (7.38). A derivation for the case of
Cartesian coordinates on a tangent plane is given in Section 6.4.
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Also needed for solving the momentum equations is a vertically discrete
analogue of equation (7.65), ∂M/∂s = p∂α/∂s, which is essentially a state-
ment of the hydrostatic condition in a generalized vertical coordinate. This
relation can also be expressed in the form ∂M/∂α = p, and this latter form
provides a guide for the following discretization.

Define M̃(x, α, t) by M(x, s, t) = M̃
(
x, α(x, s, t), t

)
for all x and t. Then

p∂α/∂s = ∂M/∂s = (∂M̃/∂α)(∂α/∂s), so

∂M̃

∂α

(
x, α(x, s, t), t

)
= p(x, s, t).

Consider two adjacent coordinate layers bounded by the surfaces s = s0,
s = s1, and s = s2, with s0 < s1 < s2. The interface between the two
layers is then defined by s = s1. Denote the values of M , α, and p on that
interface by Mint(x, t), αint(x, t), and pint(x, t), respectively. Then

M(x, s, t) = M̃
(
x, α(x, s, t), t

)

= Mint(x, t) + pint(x, t)
(
α(x, s, t) − αint(x, t)

)
+ O

(
α − αint

)2

for all (x, s) in each of the two layers. Denote the mass-weighted vertical
averages of M and α on the upper layer s1 < s < s2 by Mupper(x, t)
and ᾱupper(x, t), respectively; and denote their averages on the lower layer
s0 < s < s1 by M lower(x, t) and ᾱlower(x, t), respectively. Then

Mupper(x, t) = Mint(x, t) + pint(x, t)
(
ᾱupper(x, t) − αint(x, t)

)
+ O(∆s)3,

M lower(x, t) = Mint(x, t) + pint(x, t)
(
ᾱlower(x, t) − αint(x, t)

)
+ O(∆s)3,

and thus Mupper −M lower = pint

(
ᾱupper − ᾱlower

)
+O(∆s)3. A second-order

approximation to the hydrostatic condition (7.65) is then

∆M

∆ᾱ
=

Mupper − M lower

ᾱupper − ᾱlower
= pint. (7.105)

The relation (7.105) provides a means for communicating pressure effects
between layers.

7.17. Transport of tracers

Next consider the transport by the fluid of a tracer such as heat, salt, or
a chemical or biological component. Let q(x, s, t) denote the quantity of
tracer per unit mass of the fluid. Then the quantity of tracer per unit
volume is ρ(x, s, t)q(x, s, t), where ρ is the density (mass per unit volume)
of the fluid itself.

In the discussion of conservation of mass of the fluid given in Section 7.7,
A(t) denotes the region of parameter space occupied by a volume of fluid,
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and B(t) denotes the corresponding region in rectangular coordinates in the
inertial reference frame. The total mass of the fluid occupying those regions
remains constant in time, since the regions follow the fluid. In the case of a
tracer, it is assumed here that the amount of tracer in the volume of fluid
can vary due to diffusion across the boundary. It is also assumed that the
diffusion is due to the gradient of q and occurs predominantly along surfaces
of constant s, as in the discussion of diffusion of momentum in Section 7.12.

In analogy to the discussions in Sections 7.5–7.7, the total quantity of
tracer in the region A(t) in parameter space at time t is

∫

A(t)
ρ(x, s, t)q(x, s, t) J(x, s, t) dx ds,

where J = m1m2ms is the Jacobian defined in (7.17). The time derivative
of this quantity is ∫

A(t)
Df (Jρq) dx ds,

where Df is the flux derivative given in (7.27) and (7.46). The diffusion of
the tracer can be modelled by the same form (7.71) as used for the diffusion
of momentum, with q replacing U in that formula. Calculations analogous
to those in Sections 7.12 and 7.14 imply

Df

(
Gqps

)
= ψq +

∂

∂s
(GgFD). (7.106)

Here,

FD = −ρAD

(
1

ms

∂q

∂s

)

denotes the rate of diapycnal diffusion of q per unit cross-sectional area, and

ψq =
∂

∂x1

(
AH

(
1

m1

∂q

∂x1

)
m2ps

)
+

∂

∂x2

(
AH

(
1

m2

∂q

∂x2

)
m1ps

)
.

Integration over a layer between two coordinate surfaces s = s0 and s = s1,
analogous to the calculations in Section 7.16, yields

∂

∂t

(
G(q̄∆p)

)
+

∂

∂x1

(
m2ū(q̄∆p)

)
+

∂

∂x2

(
m1v̄(q̄∆p)

)

+ G
[(

ṡpsq
)
s=s0

−
(
ṡpsq

)
s=s1

]

= ψ̄q + Gg
[(

FD

)
s=s0

−
(
FD

)
s=s1

]
,

(7.107)

where q̄(x, t) is the mass-weighted vertical average of q over the layer, and

ψ̄q =
∂

∂x1

(
AH

(
1

m1

∂q̄

∂x1

)
m2∆p

)
+

∂

∂x2

(
AH

(
1

m2

∂q̄

∂x2

)
m1∆p

)
. (7.108)
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The term q̄∆p is the quantity of tracer per unit horizontal area, times g.
The terms involving ṡpsq represent the rate of transport of tracer across
coordinate surfaces due to material changes in s, i.e., due to the movement
of coordinate surfaces relative to the fluid. The velocity components ū
and v̄ in the momentum equations (7.101) and (7.104) are components of
momentum per unit mass, so these quantities can be regarded as examples
of the quantity q̄, except for the forcing due to the Coriolis, pressure, and
applied stress terms. If those terms are deleted from equations (7.101) and
(7.104), then the resulting equations have the same form as (7.107).

7.18. Planar and spherical coordinates

The layer mass equation (7.38), the layer momentum equations (7.101) and
(7.104), and the layer tracer equation (7.107) are derived under the as-
sumption that the horizontal coordinates are general orthogonal curvilinear
coordinates x = (x1, x2). The present subsection discusses the forms of
these equations in the special cases of planar and spherical coordinates.

For the case of planar coordinates, i.e., Cartesian coordinates on a tan-
gent plane, x1 and x2 can be taken as literal measures of distance. The
metric coefficients (7.2) are then given by m1 = 1 and m2 = 1, and in
addition G = m1m2 = 1. The factors m1, m2, and G can then be deleted
from the partial differential equations (7.38), (7.101), (7.104), and (7.107).
In the Coriolis/geometric parameter (7.102), the geometric terms (involv-
ing ∂i/∂x1 and ∂i/∂x2) are equal to zero, and the values of the Coriolis
parameter can be taken from the formula f = 2Ω sin θ given in (7.94).

Spherical coordinates are defined in equation (7.6). In that case the hor-
izontal coordinates are the longitude x1 = λ and the latitude x2 = θ. The
metric coefficients (7.7) are m1 = mλ = r cos θ ≈ a cos θ and m2 = mθ =
r ≈ a, where a is the radius of the sphere, and thus G = mλmθ = r2 cos θ ≈
a2 cos θ. It follows from (7.6) and (7.3) that

i(λ, θ, t) =
1

mλ

∂r

∂λ
=

(
− sin(λ + Ωt), cos(λ + Ωt), 0

)
, (7.109)

j(λ, θ, t) =
1

mθ

∂r

∂θ
=

(
− sin θ cos(λ + Ωt), − sin θ sin(λ + Ωt), cos θ

)
.

A calculation reproduces the formula (7.94), f = 2 j · ∂i

∂t
= 2Ω sin θ. The

geometric parameter in (7.102) is

j ·
(

ū
1

mλ

∂i

∂λ
+ v̄

1

mθ

∂i

∂θ

)
= j ·

[
ū

r cos θ

(
− cos(λ + Ωt), − sin(λ + Ωt), 0

)]

=
ū tan θ

r
,
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so the combined Coriolis/geometric parameter (7.102) is

f̄ = 2Ω sin θ +
ū tan θ

r
. (7.110)

As noted in Section 7.15, 2Ω ≈ 1.46 × 10−4 sec−1 in the case of the
rotating Earth. For a fluid velocity ū = 1 m/sec, the factor ū/r in the
geometric parameter in (7.110) is approximately 1.6 × 10−7 sec−1. In the
low and middle latitudes, the Coriolis parameter thus greatly exceeds the
geometric parameter for spherical coordinates. However, as the latitude θ
approaches 90◦, tan θ increases without bound, owing to the singularity in
the spherical coordinate system at that point. As pointed out in Section 6.1,
this singularity corresponds to a convergence of grid lines at the poles, and
for a global ocean model it is better to use a coordinate system that does
not produce a convergence of grid lines within the fluid domain.

8. Summary

The goal of this paper is to provide an introduction to the mathematical
and computational modelling of ocean circulation. The paper includes a
detailed derivation of partial differential equations that describe the con-
servation of mass, momentum, and tracers for a hydrostatic and stratified
fluid on a rotating spheroid. Also included are a description of some phys-
ical properties of oceanic flows, a discussion of some of the issues that are
encountered when the governing equations are solved numerically, and a
summary of some of the numerical methods that are used in this field.

In the derivation of the governing equations, it is assumed that the ver-
tical coordinate is a generalized coordinate that includes the cases of level,
isopycnic, sigma, and hybrid coordinates. Each of these coordinates presents
advantages and disadvantages that are discussed here. Among the consid-
erations in the choice and implementation of a vertical coordinate is the
need to represent accurately the vertical exchanges between water masses
that are often subtle but nevertheless important for long-term integrations.
It is also assumed that the horizontal coordinates are general orthogonal
curvilinear coordinates instead of spherical coordinates, in anticipation of
using a grid that is suitable for a global model.

Several numerical issues are discussed here. These include time-stepping
methods and the numerical treatment of multiple time scales; spatial grids
and spatial discretization; the solution of the nonlinear equations for the
conservation of momentum; and the numerical simulation of advection, es-
pecially in the context of maintaining nonnegative solutions and transport-
ing the multiple tracers that are typically included in numerical models of
ocean circulation.
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